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Abstract

In conducting materials such as metallic and semiconductor systems, coherent oscillations of collective free

charge may be observed at frequencies usually in the ultraviolet spectrum. This phenomenon a�ects the per-

mi�ivity response, which can assume negative values and allows sub-wavelength confinement of light, thus,

enabling a wide range of applications. The rapid oscillations of the electron density can be quantized wherein

a quantum of plasma oscillation is named plasmon. Due to this quantization, it is necessary to revise concepts

of both �antum Mechanics and the Plasmonics field. For a metal-dielectric interface, the coupling between

light modes and plasmons confined at the interface gives origin to the quasi-particle surface plasmon-polaritons

(SPP). The SPP represent the principal subject of this dissertation. The analysis of its permi�ivity response is

performed either for the case where a local medium is assumed and for the scenario where the spatial dispersion

is accounted. The quantization of the SPP electromagnetic field in the electrostatic regime is derived for both

approaches. The spontaneous emission of SPP in the nonlocal approach is also subject of study for a system

which consists in a two-level atom in the vicinity of a metal slab. The interaction between the atom and the

SPP waves is examined, taking into account a local description of the SPP in the quasi-static approximation.

Contrasts between strong and weak coupling regimes regarding the interaction of these two systems are also

discussed.

Keywords: Plasmon, Plasma Frequency, Surface Plasmon-Polariton, Charge Density Oscillation, �antum

Mechanics, Operators, �antization, �antum Electrodynamics (QED), Harmonic Oscillator, Spontaneous

Emission, Non-local Surface Plasmons
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Resumo

Em materiais condutores como os metais e semicondutores, a oscilação coerente de cargas livres colectivas é

observada para frequências tipicamente no espectro do ultravioleta. Este fenómeno afecta a resposta da per-

mitividade, possibilitando que esta assuma valores negativos, e consegue também confinar a luz com compri-

mentos de onda inferiores aos correspondentes para a mesma onda em meio livre, abrindo portas para diversas

aplicações. A oscilação rápida da densidade de eletrões pode ser quantizada, sendo o plasmão um quantum de

oscilação do plasma. Graças a esta quantização, são introduzidos conceitos referentes à Mecânica �antica e

à Plasmónica. Para uma interface constituı́da por um metal e um dieléctrico, o acopulamento entre os modos

de radiação e plasmões, confinados na interface, dá origem às quasi-partı́culas surface plasmon-polaritons (SPP).

Os SPP são o principal foco de estudo nesta dissertação. A permitividade dos SPP é analisada para o caso em

que o meio é local e para quando existe dispersão espacial. Em ambas as análises, é feita a derivação do campo

electromagnético dos SPP no regime electroestático. Também é analisada a emissão espontânea de SPP para o

problema em que se tem o átomo de dois nı́veis na vizinhança de uma chapa metálica. A interação entre estes

dois elementos é também abordada, na qual se utiliza uma descrição local dos SPP no regime eletroestático. O

contraste entre os regimes de acopulamento forte e fraco, relativamente à interação do átomo com os SPP, é

contemplado neste estudo.

Keywords: Plasmões, Frequência de Plasma, Plasmões-Polaritões de Superfı́cie, Oscilação de Densidade de

Carga, Operadores, �antização, Electrodinâmica �ântica,Oscilador Harmónico, Emissão Espontânea,

Plasmões de Superfı́cie Não-Locais
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Chapter 1

Introduction

1.1 Context and Motivation

In most of the cases, the preferential approach to characterize the dynamics of a given system is through

the classical description, which is o�en desirable due to its simplicity and satisfactory results. However, not

always the classical perspective is the most suitable one to apply for every systems, since, in general, the error

associated with this overview increases as the spatial dimensions decrease. In those cases, it is mandatory the

use of quantum theory, where the dynamics of the system are fully captured (depending on the exhaustive

description assumed). It is worth to mention that the classical and quantum theories are not incompatible

theories. In fact, the quantum theory predicts the classical properties for problems at the macroscopic scales

or having a huge number of particles. The physical quantities described by a Newtonian description are linked

with its quantum characterization through the expectation value of the corresponding observable.

The main objective of this dissertation is the study of problems with relevant e�ects and properties in the

quantum realm and their principal consequences and features when comparing to the classical description of

the same ones. More specifically, the systems of interest are inserted in the quantum plasmonic research field

[15], that combines the modern plasmonics with the quantum optics field. The plasmons consist in a coherent

oscillation of the free density charge, that emerges at high frequencies (usually in the visible and ultraviolet

spectra) in conducting materials such as metals and semiconductors [16].

The plasmons may appear in di�erent scenarios giving rise to di�erent phenomena, e.g., the bulk plasmons,

the localized plasmons and the Surface Plasmon-Polaritons (SPP), being the la�er one of most concerns in this

work. Moreover, the SPP are characterized by a strong interaction between light and plasmons and can be

treated as a quasi-particle, allowing a quantum description of their features and properties. The introduction of

the joint state of ma�er and light was introduced by Hopfield [17]. Depending on the type of ma�er, these are

called phonon-polariton, when referred to the quasi-static ions, and plasmon-polariton for the electron charge

gas scenario. A�er the Hopfield’s approach, it was then first quantized the SPP by Ritchie et al. [18], where

certain properties of the system like the hydrodynamic e�ects were not addressed, being later exploited by

Nakamura [19]. A�erward, other formulations for the SPP quantization were developed, in which the loss nature

of the plasmons is taken into account. This loss emerges from electron collisions with the background ions and

themselves. This dispersive e�ect may be nowadays quantized by a microscopic method or via a macroscopic

analysis, using the Green’s functions [5].

The interest in this field (plasmonics) is related with the outstanding range of possible practical applica-

tions, due to their unique characteristics, such as the subwavelength confinement and the capacity to support

waves that go beyond di�raction limit [20]. These properties allow the use of plasmons to produce superlenses,

where the spatial resolution of an object is enhanced when compared to the traditional optical lenses built with

positive permi�ivity materials. Plasmons are also present in biosensors (which are later presented) since their
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reflectance and transmi�ance cross-sections are extremely sensitive to modifications in the surrounding envi-

ronment. As well, their strong coupling to light is a desirable feature for light control via highly confined fields at

the surface of a metal-dielectric interface, which is very appealing for electronic circuit applications due to their

small dimensions. Other applications such as spectroscopy analysis, antennas, light emi�ers and waveguides

are also part of the plasmon applications. In order to explain the emission of SPP radiation by a quantum emi�er

is necessary to quantize the modes of the electromagnetic field and solve the Schrödinger equation. Moreover,

only using a quantum description of the system, it is possible to explain the spontaneous emission of SPP in the

presence of a quantum object.

The surface plasmons are typically introduced considering an homogeneous medium, which enables a local

response of its permi�ivity to an external electric field. However, for problems where the dimensions are of the

nanometer scale, e�ects such as the repulsive interaction between the free electrons become more relevant and

provoke a non-homogeneous spatial distribution of the charge density. This di�usion e�ect is already described

using thermodynamic theory, that result in approaches such as the hydrodynamic model [21].

In order to dispose of a quantum description of the SPP, it is necessary to introduce concepts of quantum

mechanics, as well as derive its classical electromagnetic field using Maxwell equations. In addition, some of the

plasmonic applications are revised in this work to show the fundamental features of these systems, which make

this field so appealing.

This dissertation proposes to study the interaction of a quantum object (e.g., an atom) that is placed in the

vicinity of a metal slab, which is capable of supporting SPP waves. To conduct this analysis, it is introduced

the quantization of the SPP electromagnetic field in the electrostatic regime, either using a local description

of the medium and one where the spatial dispersion response is considered. The coupling between these two

systems can fall either into the strong or into the weak regimes. Therefore, the temporal evolution of the system

is examined in both regimes. In addition, the probability of finding the atom in excited and ground states is

computed over time.

As an initial approach, the problem is considered to have no loss channels and the dynamics of the system are

simply obtained by solving the Schrödinger equation , where the Hamiltonian’s system is composed by the the

Hamiltonian of the atom and of the SPP and by the Hamiltonian due to the interaction between them. A�erward,

the inclusion of losses is made heuristically by considering a term that accounts with radiation dispersed via

spontaneous emission.

Hence, the spontaneous emission of SPP is also studied, where is assumed that in the initial state of the

system the atom is in an excited state. Moreover, the comparison of the emission rates for the cases where the

local and a non-local description of the SPP is made and in the scenario where the quantum object is in free

space. The e�ects of the nonlocality are also addressed, when discussing the density of states for the SPP in the

quasi-static approximation, being also commented its local limit.

1.2 Dissertation Outline

This dissertation is organized in six chapters.

Chapter 1 presents the objectives of this work, taking into account the physical motivation behind them.

Chapter 2 introduces the main concepts of �antum Mechanics and Plasmonics, wherein the la�er some of

its applications are discussed. Then, useful problems formulations are presented such as the quantum harmonic

oscillator, which allows to explain the quantization of the SPP in a local media, also mentioned in this Chapter.

Chapter 3 studies the non-local SPP scenario where a structure for the its electric fields as well as the dis-

persion relation for this propagation waves are derived. The density of states is also computed for the non-local

SPP and is compared with its local analogous and the density of states in free space. The quantization of the

non-local SPP electromagnetic field is also addressed.
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Chapter 4 describes the quantum model for light-ma�er systems. First, explains the two-level atom (TLA)

and, then, the light-ma�er interaction for the case of having an electromagnetic wave classically described.

Finally, the spontaneous emission of non-local SPP is computed.

Chapter 5 provides the study of local SPP with respect to the atom quantum interaction. First, introduces

the Hamiltonian reformulation. Then, the lossless interaction between TLA and SPP in the local quasi-static

approximation, where the strong and weak coupling regimes are compared.

Chapter 6 concludes the dissertation and introduces a few ideas for future work.

3



4



Chapter 2

Main Concepts

2.1 �antum Mechanics Concepts

2.1.1 Modern Physics Compared to Classical Physics

�antum physics emerged in 20
th

century and was powered by phenomena such as the black body radiation

spectrum, the photoelectric e�ect and the double slit experiment. These instigated the introduction of the

discrete energy states (quantum) concept and the wave-particle duality feature of ma�er. Moreover, quantum

mechanics defines correctly the behavior of ma�er and interactions between particles at scales near atom sizes,

where the classical approach yields inaccurate results when comparing to the experimental data. Therefore,

since that is an increasing interest on searching for smaller devices o�ering the same or higher performances,

it is expectable that quantum mechanics approach will continue to be a requirement in order to account with

e�ects that are meaningful at nanoscales.

2.1.2 Postulates

�antum theory [22] enlightens that the state of a system can be described by a mathematical complexed val-

ued wavefunction, generally denoted by Ψ, which contains all the information within a system and in particular

can represent the configuration of a particle.

The following five postulates are axioms of non-relativistic quantum mechanics, which as intrinsic property

do not need any further proof. These axioms were introduced because their derived results provide an extremely

precision when compared to the experimental data.

• Postulate 1: A quantum mechanical system is absolutely characterized by the wavefunction ψ (x, t) in

a Hilbert space and ψ∗ (x, t)ψ (x, t) is the distribution density probability amplitude that must verify Eq.

2.1

• Postulate 2: Each observable (physical entity) in classical physics corresponds to a linear Hermitian

operator (represented by a matrix) in quantum mechanics.

• Postulate 3: A particle in a given state ψ1, a�er an ideal measurement of a physical property Ω̂, will

yield to an eigenvalue ω and will collapse into an eigenstate Φ1 (i.e. Ω̂~ψ1 = ω~Φ1), such that ~ψ1 → ~Φ1.

The state ψ1 is however a superposition (linear combination) of eigenstates with coe�icients Cn, where

‖Cn‖2 represents the probability to measure the state Φn.

• Postulate 4: Every Hermitian operator contains a complete eigenbasis (formed by the eigenstates)

which implies that any possible state is contained in the linear expansion of eigenstates (Spectral The-

orem).
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Table 2.1: Common operators in �antum Physics and its correspondent physical entity.

Physical Entity Operators Physical Entity Operators

Position X Hamiltonian H = − ~2

2m
∂2

∂2x + V (x, t)

Linear Momentum Px = ~
i
∂
∂x Momentum with Electromagnetic field Px = ~

i
∂
∂x − qAx

Angular Momentum Lx = −i~(y ∂
∂x − x

∂
∂y ) Kinetic Energy with Electromagnetic field Tx = 1

2m (−i~ ∂
∂x − qAx)2

Kinetic Energy Tx = − ~2

2m
∂2

∂2x

• Postulate 5: The time evolution of the wavefunction obeys to the first order derivative in respect to

time Schrödinger equation (Eq.2.2), where ~ is the reduced Planck constant and Ĥ is the Hamiltonian

operator.

∞∫
−∞

−→
ψ
∗

(x, t)
−→
ψ (x, t) dx = 1 (2.1)

i~
d

dt

−→
ψ (x, t) = Ĥ

−→
ψ (x, t) (2.2)

In fact, ψ can be represented in any basis corresponding to an observable physical entity (e.g. momentum,

position, etc.), and its squared amplitude represents the density probability of measuring that observable, which

implies a correct normalization given by Eq. 2.1. Moreover, in order to have physical meaning, ψ (x, t) must

be continuous and has to vanish at infinity (x = ±∞ ). These two constraints are o�en applied as boundary

conditions on the energy eigenvalues determination. The profound di�erence between classical and quantum

physics is stressed by the fact that, in quantum mechanics, a system has a probability of behaving in a certain

way instead of having an inexorable deterministic behavior.

The mechanism of an operator (Ω̂) acting on a given wavefunction represents the measurement of the cor-

respondent system’s physical entity (e.g. position or energy). Thus, the values of the measurements can only

correspond to the possible eigenvalues (ω). In Table 2.1 are represented, for a particle in one spatial dimension,

some relevant Hermitian operators and their associated transformation when acted on a wavefunction in the

position x basis [22].

Postulates 3 and 5 may seem counterintuitive since one of them suggests that a particle’s behavior evolves

following deterministic rules (Schrödinger equation) unless a measurement is made. On the other hand, when

an observation is done, postulate 3 states that the particle collapses into a certain eigenstate with a probability

(| cn |2) associated.

Another important property arises from the postulate 4, where interference e�ects emerge from the super-

position of wavefunctions which enable to explain the quantum nonlocality and is the theoretical grounds of

quantum information theory[23]. In fact, any wavefunction can be wri�en as the sum over all states with exact

momentum (Eq. 2.3 and position (Eq. 2.4), where eikx and δ (x− x0) are the definite states of each physical

quantity, respectively, and ψ̃ are the coe�icients.

ψ (x) =
1

2π

∫
ψ̃ (k) eikxdk (2.3)

ψ (x) =
1

2π

∫
ψ̃ (x0) δ (x− x0) dx0 (2.4)

The dot product between an eigenstate ~ψn and the system wavefunction is typically evoked to calculate the

coe�icient cn. Since the eigenfunctions form a complete basis, they must be orthogonal to each other, hence
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this fact can be reproduced in Eq. 2.5 where δmn function is equal to one if m = n or zero otherwise.〈
~ψn|~ψ

〉
= ~ψn

∞∑
m=1

cm ~ψm = cnδmn (2.5)

2.1.3 Expectation Value and Uncertainty

Classical predictions usually have a counterpart in quantum mechanics expressed among the expectation

value of a system (a consequence of the Ehrenfest theorem), which is defined in the following Eq. 2.6 in di�erent

notations. Note that x appears in the right side of the equation multiplying due to the operation of X̂ upon

acting on function f (x). Therefore, if one want to compute the expectation value of some other observable, the

proper transformation of that operator must be used.〈
~ψn

∣∣∣ X̂ ∣∣∣~ψ〉 =

∫
ψ∗ (x)xψ (x) dx (2.6)

The formula that gives the uncertainty of measuring a physical quantity comes in Eq. 2.7, where the physical

entity is chosen to be the position.

σ2
x =

〈
X̂

2
〉
−
〈
X̂
〉2

=

∞∫
−∞

ψ∗ (x)x2ψ (x) dx−
〈
X̂
〉2

(2.7)

Certain physical properties of a system are incompatible, i.e., they cannot be defined at the same time within

a system, which follows the Heisenberg’s uncertainty principle that can be wri�en as Eq. 2.8a or Eq. 2.8b in terms

of commutators ([A,B] = AB −BA). The most famous example where this happens is for the case of position

and momentum, where if the position of a particle is precisely known (in practice this is not achievable) then

the momentum at that same moment is devoid of meaning, i.e., it cannot be known even theoretically. The

uncertainty is a fundamental property inherent in quantum mechanics nature and the more precise a physical

quantity is, the less exact is its incompatible pair.

σxσp ≥
~
2

(2.8a)

[
X̂, P̂

]
= i~ (2.8b)

2.1.4 Schrödinger Equation

The time evolution of a system can be interpreted as the rotation of ψ in the Hilbert space. Therefore, for a

basis that rotates at the same rate as the time evolution, the eigenfunction will seem static and the operator,

in contrast, will be time dependent. The la�er corresponds to the Heisenberg formalism of quantum mechanics.

Herea�er, the characteristics of the Schrödinger picture and then the Heisenberg picture are highlighted.

The Hamiltonian, for conservative forces, represents the total energy of a system just as in the classical view,

where V (x) represents the potential energy [22].

Although Eq. 2.2 is the general time-dependent Schrödinger equation, it is o�en convenient to split into

two simpler equations, Eq. 2.9a and Eq. 2.9b, and solve them distinctly, where E appears as the eigenvalue of

the time-independent Hamiltonian. The purpose is that, by postulate 3, any state (even for time-independent

Hamiltonian) can be composed by a linear combination of eigenfunctions ψE (x, t).

EψE (x, t) =

[
− ~2

2m

∂2

∂x2
+ V (x)

]
ψE (x, t) (2.9a)

EψE (x, t) = i~
∂ψE (x, t)

∂t
(2.9b)
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The solutions of Eq. 2.9b are in the form plane waves, ψE (x) e−iEt, and are designated by stationary states

due to its probability be time-independent. A�erward, the computation of Eq. 2.9a is easily extracted just

by recalling that the wavefunction solution must respect the continuity and boundary constraints. In typical

scenarios, it will exist more constraints than free parameters to determine and consequently, this will lead to the

quantization of the energy system where only some allowed energies (quanta) solve the equation. Eq. 2.9a can

be rearranged in Eq. 2.10 where k (x)
2

= 2m
~2 (V (x)− E) and one can inspect that for V (x) > E the solution

is composed of exponential wavefunctions (that must vanish at infinite) and if V (x) < E then the equation is

solved by sines and cosines.

∂2ψE(x, t)

∂x2
= k(x)2ψE(x, t) (2.10)

However, the usual scenarios and the ones with practical interest possess a time-dependent Hamiltonian.

Hence, one must adopt a new approach named Perturbation Theory, that is explained at [22] and takes into

account small variations of the time-dependent component. When the potential is greater than the particle

energy, it is common to appear states that are confined in a certain region of space, as in the case of a particle

in a box, which are designated bound states. This does not stand for every potential greater than the energy

and, in particular conditions, the particle can even pass through the disallowed region, which is the so-called

quantum tunneling [24].

2.1.5 �antum Electrodynamics

In order to provide a quantum description of the electromagnetic field, it is important to mention the relevant

consequences and features that it entails [25]. In fact, in examples such as the spontaneous emission, the Casimir

force (later discussed), the laser line-width, squeezed photon states, etc., the use of quantized radiation modes

becomes crucial for the sake of their explanation.

Since the electric and magnetic fields can be decomposed into a linear expansion of normal modes in the

Fourier space, by Maxwell equations inspection, the wave equations in Eq. 2.11 and Eq. 2.12 may be obtained,

where E (k) and B (k) are the Fourier transform of electric and magnetic fields, respectively and c is the light

speed. Their resemblance to the uncoupled harmonic oscillator equations is the key for all the further analysis.

In fact, one of the most important properties for the resolution of certain problems in quantum mechanics is

the expansion of the system in terms of harmonic oscillators, which have well-known solution described in

Subsection 2.3.1.

d2E (k)

dx2
+ c2k2E (k) = 0 (2.11)

d2B (k)

dx2
+ c2k2B (k) = 0 (2.12)

In quantum electrodynamics, it is desirable to quantize the radiation field rather than the Coulomb field

of the charged particles, since the radiation field has its own degrees of freedom, unlike the Coulomb field, for

which they are determined by the charged particles [26]. For a free space electromagnetic field quantization

without sources, there is no need to resort to electromagnetic potentials neither to provide a gauge.

However, it is worth to mention that, for systems with external sources, is mandatory to choose an adequate

(if possible) vector potential and gauge, in order to facilitate the quantization of the electromagnetic field. More-

over, each gauge has its own commutation relationships and the most common ones are the Coulomb gauge,

where is imposed the condition ∇ · ~A = 0 ( ~A is the magnetic vector potential), and the Lorenz gauge, whose

condition is given by ∂µAµ = 0 (where Aµ is the four-potential). The Coulomb gauge advantage relies on the

fact that it holds the capacity to yield to transverse photons or, a�er an appropriate transformation, to photons

with helicity. In contrast, the Lorenz gauge benefits from the Lorentz invariance.
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Due to the simpler analysis and the ability to reproduce all the desirable results for this context, it will be

further presented electromagnetic field quantization for the free space scenario without any gauge usage.

2.1.6 Free-Space Electromagnetic Field �antization

The quantization of the electromagnetic field, provided below, is valid only for the case where the medium

is non-dispersive and is a reproduction of the formulation present in [27]. For the dispersive medium scenario,

only the final result of the quantization is mentioned (for a deeper understanding consult [28]).

In order to be able to quantize the electromagnetic field, it is o�en considered a cavity terminated with

periodic boundary conditions. This method allows decomposing the radiation fields as a sum of normal field

modes, each mode associated with a unique combination between a wavenumber k and polarization n. This

assumption is very useful since it allows discretizing the integral over all the field modes into a sum. In fact,

this method does not provide any less information and any boundary condition considered reproduces the same

results.

Beginning by a classical overview of the electromagnetic field by presenting bellow the Maxwell equations

in free space and without external charges. To accomplish that, it is employed a matricial formalism [29] where

is used a six dimensional vector to represent either the electrical and magnetic fields, F = (E,H)
T , and either

the electrical displacement and magnetic induction fields,(D,B)
T , which are related to each other through Eq.

2.13. (
0 i∇×

−i∇× 0

)(
E

H

)
= i

∂

∂t

(
D

B

)
(2.13)

Considering the case of isotropic materials, which is su�icient for the further analysis on this report, the

constitutive relations may be wri�en using a matrix M = M (r), that concerns the material properties and is

defined for each spatial point. As it is possible to observe in Eq. 2.14, the matrix M is real-valued and Hermitian

since M = M†, which will be essential for the sake of the derivation.(
D

B

)
=

(
ε0ε (r) 0

0 µ0µ (r)

)(
E

H

)
(2.14)

This way, the Maxwell equations may be represented only in terms of E and H by Eq. 2.15, where the N
matrix is the one that appears in the le� side of the Eq. 2.13.

N · F = iM · ∂F
∂t

(2.15)

Moreover, since the energy stored in the electromagnetic field is given by Eq. 2.16, it is obvious that this

energy must be always positive by reminding that the matrix M is positively defined for all space.

HEM =
1

2

∫
d3rBH + DE =

1

2

∫
d3rF ·M · F (2.16)

In order to proceed further, an inner product between two vectors, denoted by 〈|〉, must be defined. This is

fulfilled through Eq. 2.17, where F1and F2 are considered as electromagnetic field vectors. The la�er expression

is analogous to the structure of the stored energy equation.

〈F1|F2〉 =
1

2

∫
d3rF1 ·M (r) · F2 (2.17)

So, by the same argument as used before, the inner product verifies 〈F|F〉 > 0, if F is not the null vector.

Assuming that F1 and F2 respect the periodic boundary conditions in a given cavity, it is then verifiable that the

condition in Eq. 2.18 holds. 〈
M−1NF2|F1

〉
=
〈
F2|M−1NF1

〉
(2.18)
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This is the same as saying that M−1 ·N is a Hermitian operator, from which immediately follows that exists

a complete basis formed by the eigenfunctions of that operator, such that

M−1 ·N |Fn〉 = ωn |Fn〉 (2.19)

where ωn is the eigenfrequency associated with the nmode of |F〉 inside the cavity. One should notice that |Fn〉
can only be complex, since, otherwise, the equation above would have an imaginary term on the le� side and

a real one on the right side. Also, the eigenfunctions correspondent to di�erent modes are orthogonal to each

other, which is depicted in Eq. 2.20. Recalling that the matrix M is real valued, it is enough to conjugate Eq. 2.19

on both sides to see that the eigenvalue correspondent to the state F∗n can only be −ωn, which consequently

implies a symmetry on the frequency spectrum.

〈Fn|Fm〉 =
1

2

∫
d3rF∗n ·M (r) · Fm = δmn (2.20)

In addition, only transverse modes exist since it is considered the scenario where there are no external charges

(i.e., ∇ · D = 0) and the medium is non-dispersive. Resourcing to the formulation of the electromagnetic field

normal modes in a cavity with periodic boundary conditions, E and H are expanded by transverse eigenmodes

in the compact way visible in Eq. 2.21. The coe�icients are given by bn = 〈Fn|F〉 and b∗n = 〈F∗n|F〉.

F =
∑
ωnk>0

bnFn (r) + b∗nF∗n (r) (2.21)

Although it may seem counter intuitive that the sum is only defined for ωn > 0, in fact the negative frequen-

cies are present in the F∗n (r) modes, as mentioned earlier. The next step stresses the computation of the stored

energy (defined in Eq. 2.16) of the electromagnetic field, now defined as an expansion of transverse modes,

which enables to convert the integral into a sum. By the orthogonality between di�erent modes (Eq. 2.20 and

the inner product definition, previously discussed, follows

HEM = 2
∑
ωn>0

‖bn‖2 =
∑
ωn>0

b′n
2

+ b′′
2
n (2.22)

where b′n is the real part of bn and b′′n is the imaginary one. In order to F be ruled by the Maxwell equations,

it is crucial thatωnbn = i ddt (bn), which leads to the simple solution bn (t) = bn (0) e−iωnt. Therefore, the real

and imaginary components of bn must be such that d
dtb
′
n = ωnb

′′
n and d

dtb
′′
n = −ωnb′n. At this moment one

should notice that b′n and b′′n present similar relations and structure comparing to the ones of the habitual

conjugate variables xn and pn, being these the spatial coordinate and momentum, respectively. This is the

crucial moment where the jump from the classical overview to the quantum one can be taken, since b′n and b′′n
may be defined in terms of xn and pn, respectively. This equivalence is made such that the stored energy of

each electromagnetic field mode corresponds to the energy of an uncoupled harmonic oscillator, which have a

known quantum description. Thus, since the energy of uncoupled harmonic oscillators is given by the following

equation (further addressed in Subsection 2.3.1)

HHO =
∑
ωn>0

(
1

2
mω2

nx
2
n +

1

2m
p2
n

)
(2.23)

then b′′n = 1
2
√
m
pn and b′ = ωn

2

√
mxn. It is therefore sustained the assumption that the electromagnetic

field is described by an infinite composition of uncoupled harmonic oscillators, since the same relations (dxndt =
pn
m = ∂HEM

∂pn
and dpn

dt = −mω2
nxn = −∂HEM∂xn

) prevail. Using the Dirac canonical quantization, where the

canonical commutation relations[xn, pn] = i~ must be observed, the canonical coordinates are promoted to

operators. This may be accomplished by writing Xn and Pn in terms of the raising and lowering operator (â†
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and â, respectively), where Xn =
√

~
2mωn

(
ân + â†n

)
and Pn = i

√
~mωn

2

(
â†n − ân

)
.

The last step is to write down the quantization of electromagnetic field (Eq. 2.24) using the knowledge that

Hamiltonian operator of the quantum harmonic oscillator is given by HHO = ~ω
(

â†nân + 1
2 I
)

. The operators

for the magnetic induction B and the electric displacement D appear just from the matricidal multiplication

M · F.

F̂ =

(
Ê

Ĥ

)
=
∑
ωn>0

√
~ωn

2

(
ânFn (r) +â†nF∗n (r)

)
(2.24)

A striking consequence from the above quantization is the fact that the electromagnetic field in a cavity

is discrete and that each energy mode is associated to a certain number of photons. In the ground state no

quanta are present, corresponding to the vacuum scenario, but if one applies the creation operator to that state,

may notice that the energy rises due to the emergence of one photon. Similarly, if one continues to use â† to

the ground state, it will appear as many photons as many times this operator is employed, and thus, a greater

energy as well. Although this result is only valid for non-dispersive media, the formula for a dispersive medium

is identical to the one at Eq. 2.24, with a li�le di�erence in the Fn terms, that follow a di�erent normalization

from the one mentioned in Eq. 2.20. The reason is implicit in the frequency dependence on the material matrix

(M = M (r, ω)), and consequently in this case the normalization is introduced as in Eq. 2.25, where the paper

[28] should be consulted for a detailed description on all the formalism behind it.

〈Fn|Fm〉 =
1

2

∫
d3rF∗n ·

∂ [ωM (r)]

∂ω
· Fm = δmn (2.25)

2.2 Plasmonics

2.2.1 Brief Description

With the purpose of introducing the concepts behind plasmons, one must understand previously that the

device’s dimensions involving plasmonic features are of the order of hundreds of nanometers or less. There-

fore, one must a�end that the influence of quantum e�ects may represent a substantial origin of error among

the mathematical system description and the experimental results observed. In metals (good conductors) it is

a�ained for energies near the Fermi level the free electron motion (valence electrons), which can be controlled

by an external field [2]. The plasmon is the quantum of free electrons oscillation waves, oscillating relatively

to fixed positive ions in a metal, and may be perceived as a collection of electrons (electron gas), which is de-

scribed as a quasiparticle with discrete energy and momentum (for propagation modes), identical to a photon

for electromagnetic oscillations. This resemblance permits an analogy on the procedure undertaken to quantize

the electromagnetic waves in photons to the electrostatic wave in plasmon case. Although one should use a

quantum model to characterize the system, almost all the important properties can be unveiled with a classical

free electron model.

This phenomenon emerges in di�erent circumstances, such as volume plasmons, surface plasmons, local

plasmons and others that will not be addressed on this thesis. Each of them has di�erent characteristics and,

hence, di�erent possible applications in multiple fields.

2.2.2 Drude’s Model

To develop a further analysis regarding the plasmons behavior, it is crucial to capture the free electrons re-

sponse (permi�ivity) in metals to an external electric field. This can be a�ained by using Drude’s model [30],

which is a particular case of Lorentz model with no restoring force (since the electrons are free), and that de-

scribes the motion of the electron “gas” (conduction electrons) moving against a background of heavy immobile

ions in metals using classical kinetic theory. The assumptions made are:
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• Electron sca�ering with other electrons, photons, impurities and the bulk (positive ions) are accounted

for the kinetics analysis by the empirical parameter τ , which stands for the mean time between collisions.

Other possible interactions are neglected, which is in practice a good approximation.

• Electron collisions are instantaneous and uncorrelated enabling describing the system as a Poisson

process, and therefore the momentum is considered zero on average a�er sca�ering.

• The probability of collision in an instantaneous time interval is dt/τ .

• Electrons achieve thermal equilibrium with la�ice only by collisions.

If an external electric field E is applied to the metal, using the Newton’s second law one gets Eq. 2.26, where

q is the elementary charge and P is the average momentum of the electron gas.

dP (t)

dt
= −P (t)

τ
− qE (t) (2.26)

Assuming E(t) = Re{E0e
−iωt}, replacing P for the current density j(t) = (−e)nP(t)/me, where n is the

number of free electrons and me is the electron mass, and using the Fourier transform one easily gets Eq. 2.27.

j (ω) =
nq2

me

1

iωτ − 1
E (ω) (2.27)

The relative permi�ivity follows from solving Maxwell equations in Eq. 2.28, where ε0 is the vacuum per-

mi�ivity, γ is the damping rate (γ = τ−1) and ωp =
√

nq2

ε0me
the plasma frequency (usually in the ultraviolet

spectrum for most metals).

εm = 1− nq2

ε0me

1

ω2 − iωγ
= 1−

ω2
p

ω2 − iωγ
(2.28)

A�ending to Eq. 2.28 (by neglecting the losses) and knowing that k2 = ω2

c2 εm, the system’s dispersion found in

Eq. 2.29 is easily achieved. Furthermore, it is verified that the transverse and longitudinal propagation modes

are supported for frequencies above the plasma frequency and at ωp, respectively. The longitudinal modes

correspond to having εm = 0 (for a thorough analysis consult [31]). Figure 2.1 illustrates the dispersion curves

for the transverse and longitudinal propagations, as well as the plot of the real and imaginary permi�ivity

predicted by Drude’s model.

ω =
√
c2k2 + ω2

p (2.29)

Drude’s model su�ices as an initial approach since it explains the principal properties inherent of metal re-

sponse to excitations. However, there are more accurate approaches as the Linhard dielectric response (examined

in [32]) and the ones done via a quantum analysis of the system, where interactions between particles and plas-

mon dispersion are accounted. The neglect of interband transition of electrons also contributes to inaccuracies

in this model.

2.2.3 Volume Plasmons

The volume or bulk plasmons appear when radiationless oscillations of single electrons become coherent and

start to act as an electron gas. Therefore, instead of the individual electrons dielectric response analysis (as

presented in Drude’s model), one ought to consider the motion of a gas with mass M = menV with V being

the volume where the plasmons are confined.
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Figure 2.1: 1.a) Dispersion of k for Drude’s model containing the transverse and longitudinal propagation modes.
b) Plot of real and imaginary permi�ivity [1].

In these circumstances and assuming a charge displacement ~u in a bulk, as observed in Figure 2.2, an electric

field will be generated such thatE = −q n~uε0 (by the Electrical Gauss law). By Newton’s law, a force ~F is produced

as shown in Eq. 2.30, from which Eq. 2.31 may also be derived.

~F = M
d2~u

dt2
=

q

me
M ~E (2.30)

d2~u

dt2
= −ω2

p~u (2.31)

Figure 2.2: Plasma oscillation in a bulk [2].

The la�er equation confirms that volume plasmons arise from collective longitudinal electron oscillations at

the plasma frequency, which are rather characterized by the oscillation in the exchange between electrostatic

and kinetic energy. Due to the vanishing magnetic field (and Poynting vector) the bulk plasmons do not couple

to transverse electromagnetic fields and, therefore, they cannot be excited by radiation. An alternative solution

is either by electron collision or using the Cherenkov e�ect to transfer energy to single electrons.

2.2.4 Surface Plasmons

The surface plasmons are defined as the quanta of charge oscillations that are extremely confined on the

interface between a metal and a dielectric as represented in Figure 2.3. When there is a coupling between these

confined plasmons and polaritons (i.e., polarization waves from a dielectric) this phenomenon is called surface

plasmon-polaritons (SPP). Moreover, this coupling is mediated by an electromagnetic field.

To analyze the dispersion of SPP waves [1] one must solve Maxwell equations at the metal-dielectric inter-

face for a homogeneous solution, i.e. a solution that is supported without external excitation. Considering the

coordinates of Figure 2.3, the surface plasmon wave is characterized by a TM mode ( ~H propagating along ~y and
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Figure 2.3: Dielectric-metal interface scheme with SPP propagation [3].

~E along ~x and ~z), which must exponentially decay along ~z either for above or below the interface, since the wave

is highly confined to the interface. It is worth to mention that, depending on the chosen coordinate system, ~ky
may be not null, from where is useful to define the wavenumber k‖ =

√
k2
x + k2

y .

However, in this scenario ~k is composed by ~kx (sinusoidal propagation) and a ~kz (exponentially decaying propa-

gation). It is straightforward to check that from the Maxwell equations these wavevectors must obey to Eq. 2.32,

where the subscript j stands for either the metal or dielectric medium.

k2
x + k2

z,j = εj
ω2

c2
(2.32)

By boundary conditions inspection, kx may also be wri�en as Eq. 2.33 and it can also be verified that such

propagations occur only if εm and εd have opposite signals [33]. For common dielectrics, εd takes positive

values, and consequently, εm ought to be negative. Since kx must be real to allow sinusoidal modes and εm
is given by Eq. 2.28, then the only possible solution exists for εm(ω) < −εd(ω). To find the upper allowed

frequency one must solve εd+εm(ωsp) = 0, which neglecting the damping term γ leads to the surface plasmon

frequency ωsp =
ωp√
1+εd

.

kx =
ω

c

√
εdεm
εd + εm

(2.33)

Figure 2.4 shows the dispersion curves for the SPP in contrast to the bulk plasmon’s and the photon’s (in the

dielectric) dispersion.

0 1×107 2×107 3×107 4×107 5×107

ωsp

ωp

kx[m-1]

ω[Hz]

SPP-Electrostatic

Bulk Plamon

SPP

Light in dielectric

Transverse waves

Figure 2.4: Dispersion curves of the photons in the dielectric, the transverse modes in the metal, the bulk plas-
mons and the e plasmons, where for the e plasmons the convergence frequency is ωsp.

The SPP wavevector is always greater than the photons wavevector in the dielectric, which means that the

e plasmon cannot be excited through direct incident radiation. This can be overcome by coupling light through

a material (e.g. a prism) with a higher refraction index in a Kretschmann or O�o configuration [8], which are

described in Figure 2.5.
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Figure 2.5: Prism coupling: (a) Kretschmann configuration, (b) O�o configuration [4].

These methods explore the total reflection mechanism of the incident light, where besides the reflected wave also

an evanescent wave is transmi�ed towards the dielectric-metal interface. Moreover, being ~k0 the wavevector of

the incident light, then the wavevector of the refracted radiation which is parallel to the interface (corresponding

to the evanescent wave) is given by ~k‖ = n~k0 sin(θ). Consequently, for some refraction indexes (n) and angles (θ)

combinations it is obtained k‖ = nk0 sin(θ) = ksp, which enables the plasmon coupling via the evanescent wave.

In fact, for the excitation frequency of SPP, the power associated with the reflected wave abruptly decreases and

almost all the energy is coupled into the SPP.

In summary, metals support: surface plasmon waves for frequencies below the plasmon frequency; volume

plasmons at frequencies near the plasma frequency; TEM propagation modes for frequencies above ωp.

The metals optical properties are the source of some applications further discussed and in fact, they vary

with the frequency associated to the incident radiation. Furthermore, for frequencies below ωp the electrons

in the metal bulk tend to reflect the radiation (opaque behavior) since the wave has di�iculties penetrating the

metal (due to the evanescent wave). In contrast, for high frequencies (above ωp) the metal becomes more trans-

parent due to the incapacity of electrons to screen the electromagnetic wave. These behaviors allow explaining

the characteristically shinning properties of metals, since the plasma frequency typically takes values in the

ultraviolet spectrum. Moreover, the energy absorption is enhanced at plasma frequency.

As λ is inversely proportional to k, the wavelength of SPP is smaller than the one of an electromagnetic wave

propagating on a dielectric, which is an interesting feature to leverage on radiation confinement at electronics

fields.

2.2.5 Short and Long-Range Plasmons

Since the permi�ivity on metals has a complex nature, then kx will also come complex. Thus, it will occur a

damping phenomenon in ~x direction, which leads to a characteristic propagation length given by Eq. 2.34.

δSP =
1

2Im (kx)
(2.34)

However, if the metal thickness (measured on ~z coordinate) is small enough, and is separated by dielectric

substrates at both sides, then two evanescent waves associated with both interfaces may be supported. In

this case, the magnetic interaction between the two interfaces cannot be neglected and the SPP dispersion

will be strongly modified such that the coupling of the two waves must be taken into account. Considering a

symmetrical environment, this coupling will produce two di�erent frequencies for the SPP waves (hybridization).

The lower (ω−) mode, also called short-range SPP, corresponds to a symmetric electric field distribution, while for

the higher (ω+) frequency the fields have antisymmetric profile (see Figure 2.6) and the respectively propagating

mode is designated long range SPP.

The frequencies, considering the dielectrics permi�ivity approximately 1 (for the air medium), are defined

in Eq. 2.35 where d represents the thickness of the film metal.

ω± = ωsp
√

1± e−kxd (2.35)
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Figure 2.6: Plasmon excitation – a) Symmetric field profile in short range surface plasmon. b) Antisymmetric
field profile in short range surface plasmon [5].

For long-range SPP, the imaginary wavevector term decreases quadratically with the decreasing of metal

thickness, thus, by Eq. 2.34 the propagation length increases, which explains the mode designation.

The dispersion curves of even and odd modes for a silver layer with thicknesses of 100nm and 50nm are

presented in Figure 2.7, where one is able to note that as the thickness of the metal slab decreases the more the

curves are approximated by usual SPP curve dispersion [6].

Figure 2.7: Dispersion curves of the coupled odd and even modes for an air-silver-air multilayer with a metal
core of thickness 100nm (dashed gray curves) and 50nm (dashed blue curves) [6].

The applications on waveguides are explored because of the confinement level of the wavelength. Although

the previous analysis, there were not accounted the leaky modes and the coupling between the SPP that is

significantly modified by the di�erence in the two dielectric layers, which inevitably leads to losses.

2.2.6 Local Plasmon

For metal nanoparticles another plasmonic excitation appears associated with a non-propagating plasmon,

which is named localized surface plasmons (Localized Surface Plasmons (LSP)). The phenomenon is identical to

the discussed volume plasmons when the dimensions of these particles are about the range of the penetration

depth (in the metal). The metal nanoparticles are involved in a dielectric (e.g., a glass) in order to be excited by

an evanescent wave, similarly to the discussed excitation of the SPP.

In the presence of an external electric field, as represented in Figure 2.8-a), the electrons move in the opposite

direction of that field (trying to cancel the field inside the nanoparticle), while the positive ions stay steady, thus

creating an opposite electric field (Lenz’s law). For a time-varying electric field with a given frequency, the

electrons will try to follow (oppositely) its movement This generates the local plasmon oscillation that has a
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stronger response for the plasma frequency (resonance frequency), which is usually in the visible or infrared

spectrum. The system also contains losses due to some electrical resistance.

Figure 2.8: a) LSP excitation by electric field. b) Field intensity distribution for a local plasmon around the
nanoparticle [7].

Detailed analysis for the physical model description of plasmon resonance in a small spherical particle can be

consulted here [8]. The results show that the absorption and sca�ering of incident light in the particles is highly

dependent on its radius a, more specifically they scale with a3 and a6, respectively. Then, for small particles,

absorption is the dominant mechanism while for larger particles it will be the sca�ering. This is the main

feature that enables the detection of metal nanoparticles, which are used as labels in biological samples. The

size variation of the metal nanoparticles leads to a resonant sca�ering power shi� in terms of the wavelength,

which is perceptible for some metals, such as gold and silver, because these shi�s occur in the visible spectrum.

Increasing the surrounding dielectric permi�ivity also provokes a redshi� on the sca�ering cross-section for

spherical particles (represented in Figure 2.9 for gold and silver nanoparticles).

Figure 2.9: Plots of the sca�ering cross-section of spherical Ag and Au particles in di�erent environments nor-
malized by a6 (a: particle radius). Solid line: vacuum, n = 1, dashed line: water, n = 1 : 33, dash-do�ed line:
glass, n = 1 : 5 [8].

Similarly, to the bulk plasmons, LSP are described not just by an e�ective electron mass but also by the

morphology and charge density of the particle. In fact, even before the study and comprehension of this phe-

nomenon, already in the fourth century AD was produced the Lycurgus Cup (Figure 2.10) by the Romans, which

employed the concepts behind local plasmons. The inclusion of variable sized gold nanoparticles in the glass

provided a green color to the Lycurgus Cup when observing the reflecting light in the cup and a red color when

a�ending to the transmission radiation.
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Figure 2.10: The Lycurgus Cup 4th century AD appears green when lit from the front and red when lit from the
back [9].

Multi-resonant frequencies can appear in nanoparticles with complex geometries, which may be seen as the

consequence of hybridizations of elementary plasmons with simpler structures.

2.2.7 Applications

Biosensors

As seen for local plasmons, the resonant sca�ering power is sensible to dielectric constant changes of the

environment which allows their use in biological and chemical sensing and detection applications [8]. Therefore,

by inserting metal nanoparticles into a biological sample, it is possible to measure the occurred shi�s on the

resonance frequency associated with certain chemicals and molecules. The nanoparticles morphology may be

adapted for a be�er identification of a given molecule. Nevertheless, surface plasmon sensors are also a viable

option in environmental changes detection for very short distances from the surface interface. Regarding the

precision of an SPP in a Kretschmann configuration, it can be detected the e�ects (a shi�) on the reflectivity for

particle’ sizes of a few nanometers’ order, e.g., it can be measured the e�ect produced by a 3nm layer of water

adsorbed on a 53nm silver film [1]. The Figure 2.11 shows the scheme of a sensor used to measure the adsorption

of a biological compost in a Kretschmann configuration.

Another example is the detection of malicious cancer cells by injecting a substance composed by a dielectric

core and metal shell into the patient body. There occurs a bonding between these particles and the cancer cells,

which enables to localize with a high precision the malicious cells via laser incident radiation. Lastly, the laser

kills the cells by heating them up.

Spectroscopy

Another possible application of plasmons lies on Raman sca�ering spectroscopy [1], used to identify the chem-

ical composition of a sample since the molecular vibrations energy spectrum provide a fingerprint-like charac-

teristic. The Raman sca�ering e�ect is analogous to a modulation (as in telecommunications) where a time-

harmonic optical field (e.g. monochromatic light) behave like a carrier that is modulated by the molecular vi-

brations (phonons). This process results in sca�ered radiation that su�ers a frequency shi� correspondent to

the frequencies associated with the molecular oscillations. The uniqueness of the originated spectrum is related

to the dependence of the molecular vibrations in its particular molecular structure (for a detailed description

consult [34]).

The Raman sca�ering is an extremely weak e�ect when comparing to other e�ects and therefore the SPP
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Figure 2.11: Biosensor scheme based on a Kretschmann configuration using SPP, based on [10].

emerge in the picture with the purpose of enhancing the strength magnitude regarding the light and molecules’

interactions. Surface enhanced Raman sca�ering (SERS) is an example of a technique using surface plasmons and

although the prominent results that have been achieved using this technique, it still does not exist a satisfactory

explanation for the observed enhancement magnitudes (where 1012 magnitudes can be achieved).

Imaging with Super Lens

Consider a given source, which may be decomposed in spatial harmonics, radiating towards a plane of interest.

The conventional optical systems usually have a maximum for the resolution that can be achieved, and which

is associated with a fixed frequency radiation. This constraint comes from the Sommerfeld radiation condition

and it is known as Rayleigh di�raction limit. It imposes a maximum spatial resolution of ∆min = 2c
f a�ained for

a source radiation with frequency f . This condition cannot be surpassed even if resorting to optical lenses.

However, in 2000, John Pendry proposed a solution for this problem based on SPP excitation which allowed

the coupling between the evanescent near-field of a source and the surface plasmons. Since the cause of the

Rayleigh di�raction limit is associated with the fading of the source evanescent near-field, this coupling stands

as the key for breaking this limit. A�ending to Figure 2.12-a), it is possible to demonstrate, using even and odd

plane wave excitation modes (consult [2] for be�er understanding), that at certain conditions the transmission

coe�icient of the incident wave comes as in Eq. 2.36 and the reflected field vanishes.

T = eγ0d (2.36)

These conditions are satisfied by using the plasmon frequency ωsp as the working frequency (so that ε0
εm
≈ −1)

and also by making γm ≈ γ0 (which are the propagation constants of the evanescence waves in metal and air,

respectively), that is verified in silver for |kx| > k0 slabs for ||kx||/k0 � 1.

Eq. 2.36 indicates that the near-field is enhanced within the silver slab and since the reflection coe�icient

disappears, the wave fading again exponentially when exiting the metal towards the air (illustrated into Figure

12-b)). If d1 + d2 = d, the exponential growing cancels the exponential decaying, thus, the transmi�ed wave

at the image plane will be identical to the one from the object plane, which in theory allows extremely high

resolutions. The approximations made are translated in inaccuracy for the results, which for the silver lenses

case are as acceptable as smaller the distance d is in comparison to the wavelength. Hyperlens via anisotropic
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Figure 2.12: a) Imaging the near-field with super lens [2]. b) Evanescent wave enhancement for image formation
at the image plane [11].

materials are also possible but are mentioned only as an informative element (for further analysis check [2] and

[11]).

2.3 Useful Problems Formulations

2.3.1 Harmonic Oscillator

Beyond being completely solved by quantum and classical mechanics, the harmonic oscillator system is also

a useful and powerful approach to solve some systems with time-dependent Hamiltonian. In fact, any system,

where the state varies in time by a small amount relative to a steady configuration can be associated with a

harmonic oscillator or an ensemble of decoupled harmonic oscillators. As in the classical example, where an

object with mass m coupled to a string with constant force k, also the harmonic oscillator potential in quantum

mechanics can be wri�en as V (x) = 1
2mω

2x2, where ω =
√

k
m is the classical harmonic oscillator frequency

and x is the displacement relative to the equilibrium point. Therefore, the Hamiltonian of a Harmonic Oscillator

follows as in Eq. 2.37.

H =
1

2m
P2 +

1

2
mω2X2 (2.37)

The fact that H can be addressed in terms of the uncertainty relations is the reason for the next derivation of

Harmonic Oscillator solutions. It is defined an operator â in Eq. 2.38a and its adjoint â† in Eq. 2.38b , which are

designated by destruction or lowering operator and creation or raising operator, respectively. One should note

that X and P are equal to their adjoint since they are Hermitian.

â† =

√
mω

2~
X− i

√
1

2mω~
P (2.38a)

â =

√
mω

2~
X + i

√
1

2mω~
P (2.38b)

These operators are introduced from the factorization method of the Hamiltonian. Thus H can be also

expressed as represented in Eq. 2.39.

H = ~ω
(

â†â +
1

2
I

)
(2.39)

This representation allows to easily extract the commutation relations between the Hamiltonian and the

annihilation operators (exhibited in Eq. 2.40b and Eq. 2.40a), which are of extremely importance when solving
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systems containing electromagnetic fields.

[â,H] = ~ωâ (2.40a)

[
â†,H

]
= −~ωâ† (2.40b)

For a particle in the eigenstate ~E with energy E, if the lowering operator is applied and then measured the

energy of the new configuration generated, is observed Eq. 2.41.

Hâ ~E = (E− ~ω) â ~E (2.41)

This result reveals that â ~E also solves the Schrödinger equation. Thus, it can be represented as a new eigenstate
~EE−~ω with a lower energy than ~E (reason for which a is called the lowering operator).

Similarly, if the lowering operator was replaced by the raising operator, one would obtain Eq. 2.42, whereas

unlike the previous scenario, the energy of the new eigenstate ~EE+~ω is incremented of ~ω relatively to the one

of ~E.

Hâ† ~E = (E + ~ω) â† ~E (2.42)

Moreover, if the raising or the lowering operator is applied n times repeatedly on ~E, the energy of the

resultant eigenstates would be ~EE+n~ω = E + n~ω or ~EE−n~ω = E − n~ω, respectively, which enables the

construction of an infinite tower of allowed energies as shown in Figure 2.13. Although the energy is not bounded

for high energies, the same does not happen for low energies, where there is a minimum positive value for the

energy which is designed by ground state. Its associated energy is E0 = 1
2~ω and can be easily determined by

considering that a acting on the ground state will result on the null vector.

Figure 2.13: Energy states of a quantum harmonic oscillator of frequency ω [12].

Contrary to what was expected classically, the ground state energy is not zero, but instead a low positive

value which is connected to the Heisenberg uncertainty principle. However, this does not impose any contradic-

tion to the classical reality that one is accustomed. The reason is that the gaps between the consecutive discrete

energies are so small in comparison to the measurements precision, that it seems like the energy allowed is

continuous.

Consequently, the problem is solved without worrying about the position and momentum basis, since one

may apply only the commutations relations presented above. The energy levels are spaced by uniform gaps of

energy ∆E = 1
2~ω, a property that is explained by the raising and lowering operator nature. The wavefunctions

ψn (x) (correspondent to the n energy level) are obtained by solving the Schrödinger equation and are typically

established in terms of the Hermite polynomials Hn (y) as perceived in Eq. 2.43.

ψn (x) =

(
mω

π~22n(n!)
2

) 1
4

e−
mx2

2~ Hn

[(mω
~

) 1
2

x

]
(2.43)
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In Figure 2.14 the behavior of ψn (x) and of the density probability function (||ψn (x) ||2) are represented

along the position coordinate for several energy levels including the ground state.

Figure 2.14: a) Wavefunctions of the harmonic oscillator for each energy level; b) Probability associated with
each energy level eigenfunction [13].

The results of this problem will be of extreme importance when discussing the electromagnetic field char-

acterization and its interactions with other systems (e.g., atoms), where the potential A (r, t) assumes the role

of X and A (r, t) is the velocity corresponding to the coordinate A (r, t). The electromagnetic field oscillations,

similarly to the harmonic oscillator, are quanta and leave a ladder of allowed energy levels. This is useful in

systems like the Hydrogen atom or electrons subjected to strong magnetic fields, wherein the la�er the energy

levels lead to the Landau levels.

2.3.2 Casimir E�ect

The Casimir force [35, 36] is a phenomenon that cannot be explained by a classical approach and where the

consequences of the quantized electromagnetic field are visible. The experiment considers two uncharged and

perfectly conductor parallel plates (as in Figure 2.15). Casimir showed that it exists an a�ractive force between

the two parallel plates very close to each other, even though they are not charged. This force is produced by

a sort of radiation pressure on the plates by the virtual photons (vacuum fluctuations) that also originate the

zero-point energy [29]. The a�ractive behavior results from pressure originated, that is weaker between the

plates than outside that region. There exist also other phenomena that exhibit similar e�ects to Casimir’s such

as the case of plates drowned into colored water containing a sonicator or the case of two beads that are apart

from each other on a string and that su�er an a�ractive force [37].

Figure 2.15: Casimir experiment scheme with to uncharged parallel metallic plates [14]

For the following derivation of Casimir’s force, one must consider that the plates have a section area S =

L2, the direction x̂ and ŷ are the ones parallel to the plates and the ẑ the perpendicular one. Moreover, the

phenomenon may be understood by admi�ing that the presence of a metal or dielectric in the vacuum modifies

the vacuum expectation value of the quantized electromagnetic field energy. Casimir also realized that for larger
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distances between the plates the force grows weaker. To calculate this force, one may first compute the lowest

energy associated with the system (zero-point energy). In the absence of external fields and since the cavity is

perfectly reflective, the waves that propagate inside the cavity must be “trapped”, and therefore only standing

waves are accounted for the zero-point energy calculation. At each possible standing wave, an energy En is

associated.

One easily confirms that due to the electric field vanishment at the conducting plates, its modes will present

a structure represented in Eq. 2.44, where no amplitude term is considered and F is used instead of E because

the la�er is used to represent the energy.

Fn (x, y, z, t) = e−iωntei(kxx+kyy+kzz) sin (knz) (2.44)

Moreover, n represents the polarizations that can propagate inside the cavity, the wavevectors kx and ky

are related by ωn/c =
√

nπ2

2 + kx + ky , and the term kn = nπ
d comes from the boundary condition referred,

where d is the distance between plates. Considering the sum of all modes, the vacuum expectation energy is

reached through Eq. 2.45.

〈E〉 =
∑
n,p

~
2
c

√
nπ2

2
+ kx + ky (2.45)

This sum inevitably diverges to infinity, and although it seems strange to have an infinite energy, in fact

what can be physically measured are not energies but rather energy di�erences. Also, the energy depends on

the shape of the cavity, and one may use the periodic boundary conditions to transform the sum above in an

integral (Eq. 2.46)) representing the energy per area, where d2k = dkxdky = (2π/L)2.

〈E〉
S

=
1

2

2~
(2π)

2

∫ ∫
d2k

∞∑
n=1

ωn (2.46)

The additional 2 factor appears in the formula to account with two possible wave polarizations (TE or TM).

However, the expression above still diverges to infinity and consequently it is introduced a regulator s that

suppresses the higher frequencies, functioning as a low pass filter. Although this formulation may seem a li�le

artificial and devoided of meaning, it can be argued that for very high frequencies any material (including the

cavity) will transmit the wave rather than reflecting it. However other approaches involving the use of functional

integrals may be employed to solve the above equation without introducing anything artificial.

Resorting to the regulator, the vacuum energy is wri�en as in Eq. 2.47. Furthermore, the equation results in

a finite energy only for Re{s} > 3. Also, the sum contains a pole for s=3, which may be analytically resolved by

using the analytically continued technique at s=0, where the sum finite.

〈E ( s)〉
S

=
~

(2π)
2

∫ ∫
d2k

∞∑
n=1

ωn| ωn |−s (2.47)

Therefore, skipping the intermediate steps, that one may consult at [34], the final expression of the energy

is given by Eq. 2.48, where ζ (x) is the Riemann zeta function used in the intermediate steps. Finally, the Casimir

force per unit area is calculated deriving the energy with respect to the distance d, obtaining the formula in

Eq. 2.49. This expression represents well why the force is incredibly weak, since the reduced Planck constant is

very small, and therefore only for very short distances the e�ects of Casimir force are visible. The signal in the

equation also explains the a�ractive behavior of the force.

〈E〉
S

= −~cπ2

6d3
ζ (−3) = − ~cπ2

720d3
(2.48)

FC
S

= − ∂

∂d

〈E〉
S

= − ~cπ2

240d4
(2.49)
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2.3.3 Surface Plasmons �antization

For the brief derivation of the fields quantization for the SPP system, it is considered the quasi-static regime,

where the magnetic field is approximately zero (B ≈ 0) and only the electric field is considered [38]. It is

introduced the potential vector of the electric field modes φk (where each k is the wavevector correspondent

to each mode), which is related with the electric field by −∇~φk = ~Ek . Thus, recalling the structure of the

quantized electric field operator, discussed previously, one may write it down in terms of the electric potential

as seen in Eq. 2.50.

E =
∑
k

√
~ωk

2

(
−∇φkâk −∇φ∗kâ†k

)
(2.50)

To fully determine the electric field operator for the surface plasmons one needs to find an expression for
~φk . Manipulating Maxwell equations and considering a system without any external sources, one extracts the

modal equation (Eq. 2.51).

∇ · (ε (ω, z)∇φk) = 0 (2.51)

Evoking the evanescent propagation in ẑ direction of the SPP wave and its characteristic TM polarization,

the general solution for the modal equation is a�ained (in Eq. 2.52).

φk (x, y, z) = ei(kxx+kyy)

{
A1,ke

−k‖z , z > 0

A2,ke
k‖z , z < 0

(2.52)

The k‖ is the wavevector parallel to the metal-dielectric interface, which must be determined as k2
‖ = k2

x + k2
y

so that Eq. 2.51 is observed.

Imposing the continuity of the electrical potential (i.e., φ (z = 0−) = φ (z = 0+)), comes that the amplitudes

in both branches of the function have to be equal Ak = A1,k = A2,k . Another boundary condition required to

verify is the continuity of the electric displacement component perpendicular to the plasmon surface, i.e., ~D or

ε∂φ∂z must be continuous. Consequently, noticing that ε (z, ω) is defined as ε0 for z > 0 (dielectric substrate)

and as εm (ω) = ε0

(
1 +

(ω2
p)
ω2

)
for z < 0 (metal substrate), it is straightforward to check that εm (ω)+ε0 = 0.

The frequency that verifies this condition is surface plasmon frequency ωsp.

In this case, one may recall by inspecting the dispersion curve at ω = ωsp that the density of modes is ex-

tremely high and consequently, the electric field can be decomposed as a sum over all possible k’s. In addition,

it must be chosen a normalization for the amplitude Ak , which in this case is given by Eq. 2.53 or more conve-

niently in Eq. 2.54, where is considered that the energy for each mode is one Joule. The n stands for the possible

polarizations of the system and d3r = dxdydz.

〈Enk|Enk〉 =
1

2

∫
d3rEnk

∗ · ∂[ωε (z, ω)]

∂ω
· Enk = 1 (2.53)

|Ak|2
∫
d3r k2

‖ e
−2k‖|z| ∂[ωε (z, ω)]

∂ω
= 1 (2.54)

The partial derivative term on the right side of Eq. 2.54 leads to ε = 3ε0 and ε = ε0 for the metal and air

media, respectively. With everything fixed, it is now possible to use the normalization condition above to extract

the value for Ak , which, for a metal slab with area S = LxLy , follows

The last step is done by replacing the electric potential obtained by Eq. 2.55 and Eq. 2.52 in the electric field

operator. It is important to remark that all this formulation is carried away by associating the normal modes of

the electric field to uncoupled quantum harmonic oscillators.

|Ak| =
√

1

2ε0k‖S
(2.55)
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Chapter 3

Non-local SPP

3.1 Classical Metal Response in Non-local Medium

3.1.1 Dri�-Di�usion Model

The description of the plasmonic response to an external source is usually made with the assumption of a ho-

mogeneous charge distribution along the metal slab. In practice, when dealing with systems of a few nanometers

size, the Drude’s model is not the most adequate approach due to the outmatching results when compared with

the experimental ones [39]. For a more acquainted description, certain mechanisms should be taken into ac-

count, such as the motion of single electrons and the repulsive Coulomb interactions between each other. These

interactions provoke di�usion e�ects, which create a repelled motion of electrons from the areas with higher

charge concentration as the case of the interface where charges are accumulated [40, 41]. An immediate im-

plication of this charge nonlocality is that the value of the electric polarization in a specific position (due to an

external electric field) is no longer solely determined by the response of that point, but also of its surrounding

region. Consequently, this implies the introduction of a new electron’s motion model for non-local media and

the derivation of a dielectric spatial dispersive response [42].

Furthermore, the nonlocality may also be perceived as a macroscopic manifestation of the Pauli exclusion

principle and the description of the electromagnetic properties in this kind of materials may be accomplished

by using the Hydrodynamic (or Dri�-Di�usion) model [39, 43]. Despite the existence of other approaches [44],

such as the time-dependent density functional theory (TD-DFT) [45, 46] which allows a quantum description

of collective excitations, their complexity is higher. In specific for the TD-DFT model, its dimensional regime of

validation is comprised of sub-nanometer systems, which do not cover most of the Plasmonic applications.

Unlike the Drude’s model where the current density does not have any spatial dependence, the Dri�-Di�usion

or Hydrodynamic model comprises this dependence in an additional term β2∇ρ resulting in the Eq. 3.1.

∂
−→
j

∂t
= ε0ωp

2−→E − γ−→j − β2 (3.1)

Here, ρ is the density charge and β2 =
〈
v2
〉

= 3
5vF

2 is a term that indicates the strength of the nonlocality, being

vF the Fermi-velocity of the electron gas [2]. The methods used to represent the electrons response are usually

based on Boltzmann theory and the Navier-Stokes equation [41]. Another very common method to include the

spatial dispersion of the medium is the local analogue method (LAM), which can reproduce results with a good

level of precision, by replacing the non-local metallic surface with an e�ective local metallic surface coated with

a dielectric layer.

The procedures undertaken hereina�er to achieve a closed expression for the permi�ivity on non-local metals

are the same as followed at [2, 47]. One may foresee that in the static limit (∂
−→
j
∂t = 0), the current is given by
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−→
j =

ε0ω
2
p

γ

−→
E − β2

γ ∇ρ, where the first term in the right side of the equation represents the dri� current and

the second one is associated with the di�usion current [2]. However,∂
−→
j
∂t is in general non-trivial Thus, to solve

the di�erential equation it is o�en assumed that the solution can be decomposed in planar waves of the form
−→
E ∼ ei(

−→
k ·−→r −ωt) for the di�erent possible wave vectors

−→
k = (kxx̂; ky ŷ; kz ẑ) [48]. Consequently, it follows

that ∇ = i
−→
k and ∂

∂t = −iω, which combined with the continuity equation 3.2.

∂ρ

∂t
+∇ · −→j = 0 (3.2)

Substituting this result in the Hydrodynamic equation one obtains

ω(ω + iγ)
−→
j − β2−→k (

−→
k · −→j ) = iωε0ωp

2−→E (3.3)

One may also rewrite the la�er equation in a matricial notation, as M
−→
j = iωε0ωp

2I
−→
E being M = ω (ω + iγ) I−

β2~k⊗~k. Moreover, simply by matrix inversion one may define the electric density current in terms of the electric

field (Eq. 3.4).

−→
j (k, ω) = iωε0

ωp
2

ω(ω + iγ)

I−
−→
k ⊗
−→
k

−→
k

2
− 1

β2ω(ω + iγ)

 · −→E (3.4)

Investigating now the Ampere law in the spatial spectral domain it comes as ∇ ×
−→
H =

−→
j − iωε0

−→
E . More-

over, invoking the relation between the density current with the electric field in 3.4, the same equation can be

reformulated as∇×
−→
H = −iωε̂(k, ω)

−→
E , where the current density may be accounted in the phenomenological

tensorial permi�ivity ε̂(k, ω) as a polarization susceptibility response whose expression is

ε̂ (k, ω) = ε0

[
I− ωp

2

ω(ω + iγ)

[
I−

−→
k ⊗
−→
k

k2 − ω(ω+iγ)
β2

]]
(3.5)

One may further notice that if the di�usion is negligible (β → 0) the Drude’s permi�ivity is once again

recovered. However, in the literature [49] one may find a slightly di�erent expression for the permi�ivity ten-

sor containing a term ε∞ [50] multiplying by the first identity matrix in Eq. 3.5. The term ε∞ portrays the

properties of the dielectric response of the bound valence electrons in the metal at high frequencies, excluding

the conduction electrons [6]. In some approaches, such as in [51], this term (ε∞) also accounts with the inter

and intraband transitions in the metal, in order to achieve a permi�ivity description with higher accuracy when

compared with the experimental data.

For a be�er perception of the consequences of a non-local dielectric response, the electric displacement may

be computed in the spatial domain, which in practice corresponds to the convolution in Eq. 3.6.

−→
D(r, ω) =

∫ ∫ ∫
d3r′ε̂(r − r′) ·

−→
E (r′) (3.6)

It is clear from the Eq. 3.7, that in contrast with a local permi�ivity, from where only a Dirac’s delta term appears,

the non-local one contains an extra term.

ε̂(r) = ε0

(
1− ωp

2

ω(ω + iγ)

)
δ(r)− ε0ωp

2

ω(ω + iγ)
∇∇

(
ei
√
ω(ω+iγ)r/β

4πr

)
(3.7)

Moreover, this term as a non-zero contribution in the vicinity |r − r′| > 0 of the position of interest r, decaying

as the distance increases. This e�ect is pictured in Figure 3.1.

Another consequence of the di�usion is the enhancement of fields penetration induced by charges at the

surface of a metal.
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Figure 3.1: Permi�ivity contribution in terms of the spatial range from the position of interest for weakly (le�
image) and strong (right image) spatial dispersion. The Dirac’s impulse widens as much as the nonlocality e�ects
become stronger [2].

3.1.2 Transverse and Longitudinal Propagation modes

This section pretends to understand how the spatial dispersion a�ects the electromagnetic fields within the

metal and its surface. Also, it compares the major modifications in the dispersion curves regarding its analogous

in a local metal.

It will be of interest to determine the natural propagating modes present in a non-local metal slab. Con-

sidering plane waves propagating, the possible modes can either be transverse or longitudinal. In the case of

the former, by defining
−→
ET and εT as the components of the electric field and the permi�ivity, respectively,

perpendiculars to the wave vector (
−→
k ), the electric displacement may simplify into a direct multiplication , i.e.,

−→
D = ε̂ ·

−→
ET = εT

−→
ET . The transverse permi�ivity εT is given by Eq. 3.8 and it already contains the term ε∞

addressed previously.

εT (ω) = ε0

(
ε∞ −

ωp
2

ω(ω + iγ)

)
(3.8)

In this scenario, it is interesting to note that the spatial dispersion does not a�ect the propagation of transverse

waves when comparing to a similar local medium. Thus, the dispersion is the same as in the Drude’s model.

An analogous simplification occurs in the computation of the electric displacement for the longitudinal

modes of the electric field (
−→
EL) as

−→
D = ε̂ ·

−→
EL = εL

−→
EL. The longitudinal permi�ivity is denoted by εL and its

expression, that is now also a function of the
−→
k , is found in the Eq. 3.9.

εL(ω,
−→
k ) = ε0

(
ε∞ −

ωp
2

ω(ω + iγ)− β2
−→
k

2

)
(3.9)

Hence, the permi�ivity contains contributions of both propagation’s modes such that its interdependence is

given by Eq. 3.10.

ε̂(ω,
−→
k ) = εT

(
I −
−→
k ⊗
−→
k

−→
k

2

)
+ εL

−→
k ⊗
−→
k

−→
k

2 (3.10)
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Moreover, it is evident the implicit dependence of the di�usion e�ects on the longitudinal permi�ivity through

the term β2−→k 2, which implies, in contrast with the local scenario, that the bulk plasmons admit radiation fields

(non-null Poynting vector S) even though the magnetic field is approximately zero [2]. In turn, the dispersion

of the bulk plasmons will be consequently modified, more precisely by se�ing εL(ω,
−→
k ) = 0 (condition for

longitudinal waves admi�ance in the scenario where ∇ ·
−→
D = 0), which produces the following dispersion

equation

k‖,l = ±

√
kx

2 + ky
2 +

ωp2

ε∞
− ω(ω + ιγ)

β2
(3.11)

In the la�er expression, it is assumed that the ẑ component of the wave vector is imaginary (i.e. kz = ik‖,l),

due to the known evanescence behavior of surface plasmons. The signal choice stays unequivocally determined,

accordingly to the direction of wave a�ending to its intrinsic decaying behavior.

3.1.3 Additional Boundary Conditions

Another problem arises when introducing an interface formed by a local and spatial dispersive medium, be-

cause of the indetermination on the characterization of the propagation waves, when using the Maxwellian

Boundary Conditions (MBC). Therefore, no longer su�ices to impose the continuity of the tangential E and

H fields. The interpretation behind this problem lies on the allowed number of polarization states per (ω,
−→
k ),

which may be greater than two (the typical for local media). This is intimately related to the degrees of freedom

in dispersive materials manifested through material internal variables such as the current
−→
J and charge density

ρ, which require a boundary condition at the interface. In fact, for the case of a metal-dielectric interface, there

are three polarizations: two transverse and one longitudinal to the interface (for a deeper understanding consult

[2]).

This fact envisages that to solve the boundary value problem for a non-local medium it must be applied

Additional Boundary Conditions (ABC) [52]. Nevertheless, an issue remains related with the correct ABC’s

choice, since it does not exist a general formulation to derive the suitable ABC for a given system. Instead, an ad

hoc study towards a specific system must be conducted in order to find a correct ABC. There is some controversy

regarding to what ABC should be used in certain scenarios [52].

For a dielectric-metal interface context, the additional condition was already subject of a detailed study

[21, 52, 53], where the two most recognized approaches are either when the normal component of the current
−→
J vanishes at the surface or when the electric field

−→
E is assumed to be continuous. These two conditions

coincide in the case where the local dielectric is vacuum. The reasoning behind the first approach is supported

by the fact that, neglecting the bound charges, the current should not spill out from the metal interface. While

the second one is justified by assuming that the fields vary smoothly at the interface. One should be aware that

the correct condition should be only the vanishing of the free electrons current at the interface
−→
Jf

∣∣∣
z=0
· n̂ = 0.

For the case under study (a metal-dielectric interface), the continuity of
−→
D at the interface (from the MBC),

together with the ABC
−→
J
∣∣∣
z=0
· n̂ = 0, yield to the condition 3.12, where εb is the dielectric response that

includes the vacuum and the bound charges contribution at the metal, and that for the present case is equal to

ε∞.

εb
−→
E (z = 0−) · n̂ = εd

−→
E (z = 0+) · n̂ (3.12)

This is ensured by the constitutive correlations:
−→
D = ε

−→
E +

−→
J
−iω in the metal region and

−→
D = εd

−→
E in the

dielectric.

Further on, regarding the boundary conditions, the methodology employed is the same one followed at

[2, 21] .
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3.2 Electromagnetic Field in �asi Static Approximation

3.2.1 Dispersion

A similarly work to the one developed throughout section 2.3.3 takes place herea�er, where the quantization

of the Electromagnetic field modes are reproduced, now accounting with the di�usion e�ects.

Figure 3.2: System under study: non-local surface plasmon in the vicinity of a two-level quantum object, e.g., a
two-level hydrogen atom or a quantum dot.

Once more, this is a�ained by considering an electrostatic regime (∇ ×
−→
E ≈ 0 and H ≈ 0), which is a

reasonable approximation for wavelengths greater than the distances involved in the system. The schematic of

the system is represented in Figure 3.2. Bearing in mind that it can be introduced an electric potential φ, such

that
−→
E = −∇φ, and that no external charges are contemplated (∇ ·

−→
D = 0), it follows

As seen before, the analysis is simplified by expanding the electric potential in planar waves with the form

φ ∼ ei(
−→
k ·−→r −ωt). Hence, in the dielectric substrate Eq. 3.13 yields to (

−→
k ·
−→
k )εDφ = 0, which is equivalent to

say that only transverse waves are allowed, i.e., (
−→
k ·
−→
E = 0).

∇ · (ε̂(ω, κ) · ∇φ) = 0 (3.13)

From the la�er condition and since the waves propagating perpendicularly to the interface are evanescent, the

propagation constant kz is imaginary such that kz = ik‖, where k‖ =
√
k2
x + k2

y is a real number. In the metal

layer, besides the transverse solution
−→
k2 = 0, a longitudinal wave solution also appears εL(ω,

−→
k )φ = 0, which,

as seen previously, leads to k‖,l.

Exploiting the system’s translational invariance and symmetry along the x̂ and ŷ direction, it may be chosen

the modes with propagation wave vector
−→
k = (kx, 0, 0). Thereby, a general structure of φ may be wri�en as in

Eq. 3.14, where A1, A2 and B are arbitrarily constants, whose dependence on each other is given by the MBC

plus the ABC.

φ (r, t) = ei(k‖x−ωt)

{
A1e

k‖z +A2e
k‖,lz , z < 0

B e−k‖z , z > 0
(3.14)

Moreover, these correlations also provide a valuable insight regarding the dispersion curves. So, it is easily

checked from 3.14, 3.12 and the two MBC, φ (z = 0+) = φ (z = 0−) and
−→
D (z = 0+) =

−→
D (z = 0−), that the
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linear equations’ system may be wri�en in the nicely summarized matricidal form presented in Eq. 3.15. 1 1 −1

εT (ω) 0 εD

εbk‖ εbk‖,l εDk‖


 A1

A2

B

 =

 0

0

0

 (3.15)

This system is solvable by the trivial solution, which is not of special interest here, and by the one that comes

from matching the matrix determinant to zero. The la�er leads to the Eq. 3.16 and to the relations among the

coe�icients: −A1εT (ω)/εd = B and A1 +A2 = B.

εb(εT (ω) + εd)k‖,l + εd (εT (ω)− εb) k‖ = 0 (3.16)

Through simple algebra manipulation, Eq. 3.16 may acquire the arrangement

1 + εd

(
1

εT (ω)
+

k‖

k‖,l

(
1

εb
− 1

εT (ω)

))
= 0 (3.17)

which is identical to the one found in [2], with the exception that in the la�er no approximation is made.

In addition, one may realize by rewriting k‖,l in terms of k‖ (that is equivalent to kx since it is assumed

ky = 0) and by replacing εT (ω) (defined in Eq. 3.8) in the expression 3.17, that it is not possible to achieve

a unique analytical function of k (ω) for all the domain of ω. Nevertheless, the same does not hold true for

the positive domain of ω, which is the one with interesting physical meaning. In fact the dispersion equation

k (ω) that covers the the entire frequency domain is composed by two branches, being these associated with the

negative and positive frequencies. This multivalued feature of the dispersion equation, presented in Eq. 3.18,

emerges due to the necessity of k (ω) be symmetry for the positive and negative frequencies.

k‖ =
| ω |
β

(
1−

ω2
sp

ω2

)
(3.18)

In addition, one may conclude by inspection of Eq. 3.18 that, unlike to what happens in the local model of the

SPP in the regime quasi-static, where infinite modes can propagate at ω = ωsp, in this case no propagation

waves are supported.

We used the Mathematica and numerical methods to obtain the non-local dispersion curve in the electrostatic

regime. This curve is traced in Figure 3.3 together with the dispersion curves for the non-local SPP without

approximations (from [2]) and for the one using the local model in the quasi-static regime. The first comment of

the derived dispersion curve regarding the one in the electrostatic regime having local medium response is that

the curve is no longer a constant line for ω = ωsp. In fact, it still resembles a horizontal line intrinsic of the local

scenario but with a small slope that allows higher frequencies to propagate as the wavenumber increases. Also,

in comparison with the dispersion curve associated with the exact model of the non-local response, it is possible

to see that for large wavenumbers both slopes are coincident, which allows one to infer that the di�usion e�ects

enable the propagation of frequencies above the usual surface plasmon resonance.

For an easier perception of the nonlocality, it was resorted to normalized variables, such as ηeff = kx/k0,

ωn = ω/ωp, and plo�ed the dispersion curves for di�erent values of β (Figure 3.4). As one may observe, it appears

a well known blue shi� on the dispersion curve which corroborates the idea that stronger the nonlocality is, the

easier is the propagation of modes for frequencies above the ωsp. This also implies that the habitual divergence

for the local SPP on the density states at the plasmon resonance no longer appears. Hence, this modification

may be seen as a redistribution of those states over a wider range of frequencies interval. Besides that, the

quasi-static approximation presents itself a good approximation as the frequency and the wavenumber increase

in comparison with the dispersion curve produced by the exact derivation in the dispersion.

It should be stressed out that as β decreases, the non-local influence on the dispersion curves also diminishes,

e.g., for c/β = 500 the curve almost coincides with the line that passes at ω = ωsp. Throughout this study the

30



2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

ηeff

ω

ωp

Figure 3.3: Lossless surface plasmon dispersion curves with εb = 1, εd = 1, c/β = 100. Although the typical
values are around c/β = 200, where we considered stronger di�usion e�ects to perceive be�er the impact of
the medium non-locality on the dispersion curves. The green dashed curve corresponds to local scenario within
the Drude model, the orange curve corresponds to non-local medium without approximations, the blue dashed
curve corresponds to non-local medium in the electrostatic approximation.

phenomenological variable β is assumed to be the one of the silver metal, β ≈ 0.0036 × c,which is computed

by β =
√

3
5vF , where vF is the Fermi velocity of silver.

0 2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ηeff

ω

ωp

Figure 3.4: Lossless surface plasmon dispersion curves in the quasi-static regime with εb = 1, εd = 1. The blue
dashed curve corresponds to c/β = 50, the orange dashed curve corresponds to c/β = 100, the blue curve
corresponds to c/β = 200 and the orange curve corresponds to c/β = 500.
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Thus, it may also be achieved an expression for ω in terms of k‖ that is represented in Eq. 3.19.

ω
(
k‖
)

=


k‖β

2 +

√
β2k2
‖

4 + ω2
sp , ω > 0

k‖β

2 −
√

β2k2
‖

4 + ω2
sp , ω < 0

(3.19)

This function is obtained from the quadratic formula, where the signal of the square root must be chosen so that

the values of frequency obtained in the original dispersion equation (Eq. 3.17) can be regained. As odd as this

double choice in the solution may seem, the new degree of freedom emerges when the term k‖,l in Eq. 3.17 is

squared, being added a new solution to the equation with no physical meaning. These analytical expressions for

relating the wavenumber with the frequency are fundamental for the analysis on the Density of States (DOS)

for the non-local SPP, which is addressed bellow.

3.2.2 Density of States of Non-local SPP

As mentioned before, the divergence of the density of states [2] at ω = ωsp is an intrinsic characteristic of

the SPP described by a local model. This feature has great implications in the interaction between a quantum

object and light (SPP electromagnetic waves) which is discussed in the next Section. Therefore, next we derive

the DOS of the spatial dispersive SPP, using a two dimensional (2D) analysis, because of the SPP evanescent

behavior in the ẑ direction, that allows to constrain the propagation along the 2D metal-dielectric interface. The

discussion of this topic will be extended to the local media and to the free space scenario. By free space, it is

meant that the atom is surrounded by vacuum rather than by the surface plasmonic slab. Unlike to the SPP

DOS, which is defined in a 2D space, in the free space scenario we have a three dimensional topology. In addition

to the 3D analysis for the free space DOS also a 2D derivation is made in order to compare DOS’s with the same

dimensions. The 2D free space DOS allows to be�er compare and understand how the density of states varies

with the introducing of a plasmonic interface.

The dispersion relation of the electromagnetic wave in free space is simply given by the wave equation,

k‖
2 = kx

2 + ky
2 + kz

2 = ε0
ω2

c2 , where in the 2D case kz = 0. For the DOS examination, just the small range of

frequencies in the vicinity of the ωsp is important to extract the relevant conclusions.

The usual procedure [54] to derive the DOS of a given electromagnetic source is via the Green Function [55]

of the system. However, the equations used to reckon the number of states per frequency and per area or per

volume depending on the analysis, are given in Eq. 3.20 and Eq. 3.21 for a 2D and a 3D geometry, respectively.

n (ω)2D =
1

L2

∑
ky,kx

δ
(
ω − ωk‖

)
(3.20)

n (ω)3D =
1

L3

∑
ky,kx,kz

δ
(
ω − ωk‖

)
(3.21)

Whether it is considered a 2D or 3D geometry, L is considered the length of the edges for the square and cube

side. The derivation for the 2D and 3D is going to be done in parallel.

Instead of computing the number of states per frequency, many books prefer to use the number of states

per energy units, which is the same, in practice since the energy and the frequency are directly related. Another

quantity that is extremely useful, but which will not be adopted in this work, is the Local Density of States

(LDOS) [56]. In addition to the DOS, the LDOS gives the density of states for a chosen point in the space and it

is se�led as a weighted sum containing the eigenvectors’ amplitude [56].

A common method to sum all the possible states in the k spectral domain is to use the periodic boundary

conditions, assuming that L→∞, to transform the sum into a continuous integral. The resultant equation for
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n (ω)2D and n (ω)3D are presented in Eq. 3.22 and Eq. 3.23, respectively.

n (ω)2D =
1

(2π)
2

∞∫
0

dkx

∞∫
0

dkyδ
(
ω − ωk‖

)
(3.22)

n (ω)3D =
1

(2π)
3

∞∫
0

dkx

∞∫
0

dky

∞∫
0

dkzδ
(
ω − ωk‖

)
(3.23)

In both cases, the integration variables are in the Cartesian coordinate system, while the wavenumber inside the

Dirac delta (k‖) acts as the radial coordinate either in the polar or spherical system. Thus, a change of variables

to the polar and to the spherical systems must take place, in which the integral over the angular variables is

equal to 2π in the 2D scenario and 4π in 3D, since the system is rotational invariant in both cases. Hence, the

DOS functions acquire the structures of Eq. 3.24 and Eq. 3.25 for the 2D and 3D model, respectively.

n(ω)2D =
1

2π

∞∫
0

k‖δ
(
ω − ωk‖

)
dk‖ (3.24)

n(ω)3D =
1

2π2

∞∫
0

k2
‖δ
(
ω − ωk‖

)
dk‖ (3.25)

Being these general formulas, the derivation of the DOS of the SPP for the non-local model will now take

place. The first problem lies on the fact that ωk‖ depends on the integration variable, which complicates the

integration. Then, to surpass this di�iculty it may be used a property of the Dirac δ-function [57], which says

that if a function f (x) is monotonic along their integration region, then
∫
f (x) δ (g (x))dx = f(x0)

|g′(x0)| , where

g (x0) is the root of g (x). Hence, the expression n (ω) acquires the new form represented in Eq. 3.26, where ωk‖
is the frequency of the surface plasmons that is related to the wave vector through the dispersion Eq. 3.19.

n (ω) =
1

(2π)
k‖

1∣∣∣∣ ∂ω∂k ∣∣ω=ωk‖

∣∣∣∣ (3.26)

Moreover, a�ending that the derivative
∂ωk‖
∂k is determined by Eq. 3.27 and writing the wave vector in terms

of ω (accomplished using Eq. 3.18), the DOS of the non-local SPP is simplified into Eq. 3.28.

∂ωk‖
∂k

= −β
2

+
kβ2

4
√

k2β2

4 + ωsp2

(3.27)

nsp (ω) =
ω4 − ωsp4

2πβ2ω3
(3.28)

This function shows that the density of states at the surface plasmon resonance is zero. This appears to be con-

tradictory according to what happens in the local scenario in the quasi-static approximation, where the number

of states diverges at ω = ωsp. This divergence is easily observed through Eq. 3.24, since that the frequency of

any k mode is always ω (k) = ωsp, implying that the δ-function simplifies into δ (ω − ωsp). Consequently, for

ω 6= ωsp the integral is zero and otherwise is infinite since there are infinite modes of k at the surface plasmon

resonance. The explanation to the contrast in the non-local can be made through the inspection of its dispersion

curve (blue dashed curve in Figure 3.3), from where is seen that no propagation mode is supported at ω = ωsp

(since wave vector corresponds to the null vector).

The representation of the DOS for values below ωsp is suppressed throughout this section because the dis-

persion relation and the propagation modes themselves are not defined for that frequency interval. One may
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Figure 3.5: Density of states of a non-local surface plasmon, which is plo�ed for the frequencies in the vicinity
of the surface plasmon resonance (ω ∈ [ωsp, 2ωsp]). The frequency is normalized as ω/ωsp and therefore the
plot is general for any metal.

inspect from the Figure 3.3 that for ω � ωsp the exact and approximate curves of the spatial dispersive, SPP

overlap. Such behavior occurs due to the validity limit of the quasi-static approximation which portrays accu-

rately the reality of the problem only for the high frequencies (over ωsp) [58].

In addition, the DOS for the local SPP described via the Drude model and without the quasi-static approxi-

mation being made [2] is presented in the equation below.

nsp (ω)Local =
1

16πc2
ω2
sp

(ωsp − ω)
2 (3.29)

However, this formula is only valid for frequencies in the vicinity of ωsp since the original dispersion relation

(k (ω) = ω√
2c

√
ω2
p−ω2

ω2
sp−ω2 ) is approximated by k (ω) ≈

√
ω3
sp

2c
1√

ωsp−ω
. From the formula, it is concluded that the

same divergence of states occurs at ωsp, albeit that, in contrast to the electrostatic approximation, the number

of states at other frequencies is non-zero. However, the DOS decreases as the considered frequency moves away

from ωsp.

The DOS of the spatial dispersive SPP is represented in Figure 3.5 for the frequencies interval [ωsp, 2ωsp],

where is visible that the number of states increases as the frequency increases but without the habitual peak from

the local approach. Also, in comparison to the local scenario, where the function of ω (k) is constant (horizontal

line for ω = ωsp), in the non-local case, the same function is multivalued. Therefore, all the concentration of the

k states is redistributed along a wider range of frequencies.

Moving now to the DOS in free space for the 2D and 3D cases, the expressions can be found in Eq. 3.30 and

Eq. 3.31, respectively.

n0(ω)2D =
2ω

πc2
(3.30)

n0(ω)3D =
ω2

πc3
(3.31)

The main di�erence in comparison to the DOS derivation for the non-local SPP stands in dispersion relation that

is now given by k = ω
c . Additionally, it is also needed to multiply by a factor of 2 because of the two possible

polarizations of the modes TEM.

To conclude the analysis is plo�ed in Figure 3.6 the ratio between nsp (ω) and n0(ω)3D . It is identified that

n0(ω)3D possesses more states than the DOS of the non-local SPP. What one could expect is that the presence
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of a metal slab, that is able to support electromagnetic modes, would always increase the number of light modes

in comparison to the case of the TLA in empty space. However, the examination nsp (ω) was made in only

two dimensions while the n0(ω)3D was made in three. Therefore, it should be instead compared the case ratio

between nsp (ω) and n0 (ω)2D , which is plo�ed in Figure 3.7. This Figure shows that DOS of the SPP in the

nonlocality can achieve magnitudes five times higher than the free space in a 2D geometry, which confirms that

the presence of an apparatus that support radiation waves increases the number of states per frequency.
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Figure 3.6: The graphic shows the comparison between the DOS of the non-local surface plasmon and of the 3D
free space, which is plo�ed for the frequencies in the vicinity of ωsp. It is considered a silver metal slab, where
its ωsp ≈ 2π × 646THz and β ≈ 0.0036c [m] (being c the speed of light ).
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Figure 3.7: The graphic shows the comparison between the DOS of the non-local surface plasmon and of the 2D
free Space, which is plo�ed for the frequencies in the vicinity of ωsp. It is considered a silver metal slab, where
its ωsp ≈ 2π × 646THz and β ≈ 0.0036c [m] (being c the speed of light ).

3.3 Non-local SPP Electromagnetic Field �antization

At this point, the quantization of SPP accounting with the non-local di�usion e�ects is similar to the one

used in the local scenario, and indeed it presents the same structure as the one in Eq. 2.50. Nevertheless,

since the electric potential scalar φ contains an additional longitudinal wave the values of the normalization

constants, given by the habitual normalization in Eq. 2.53, will be di�erent. Another important assumption is

the neglect of the system damping, i.e., γ ≈ 0 in order to achieve a real-valued permi�ivity. The main reason

for this approximation is due to the simple approach that can be undertaken. If the losses were introduced

directly in the permi�ivity, then the Hamiltonian, that is composed by the electric field operator, would not

be Hermitian, which is a required property of any observable. Then, to account with the losses, it would be

necessary to introduce phenomenological variable that would reproduce the e�ects of the losses (for a thorough

understanding see [28]).
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However, the material matrix M is now dependent not only on the frequency but also on the wave vector
−→
k , as shown in Eq. 3.32.

M =

(
ε̂(ω,
−→
k )I3×3 0

0 µ0I3×3

)
(3.32)

Consequently, this means that ∂[ωM]
ω is defined for each k mode. Indeed, only the term regarding the per-

mi�ivity is of interest since Fnk = (Enk, 0)
T and therefore only ∂[ωε̂]

ω is relevant to compute. Moreover, since

it is considered the electrostatic approximation the electric field can be defined in terms of an electric scalar

potential such that
−→
E = −∇φ(ω, r), where φ(ω, r) is the potential defined previously in Eq. 3.14. Therefore the

electric field may be rewri�en as

~E = −ieik‖x
{ −→

k1E1 +
−→
k2E2 , z < 0

−→
k3E3 , z > 0

(3.33)

where:
−→
k1 =

(
k‖, 0,−ik‖

)
;
−→
k2 =

(
k‖, 0,−ik‖l

)
;
−→
k3 =

(
k‖, 0, ik‖

)
; E1 = A1e

k‖z ; E2 = A2e
k‖lz ; E3 =

Be−k‖z . The advantage in such representation lies in the fact that, for the metal interface, ∂[ωε̂(ω,
−→
k )]

ω can

also be wri�en in terms of wave vectors, as one may foresee from 3.10, simplifying greatly the normalization

computation. Actually, it is easy to confirm that in the metal interface ∂[ωε̂(ω,
−→
k )]

ω ·
(−→
k1E1 +

−→
k2E2

)
yields to

ε0

[
E1

(
εb +

ω2
p

ω2

)−→
k1 + E2

(
2ε2
b

ω2
p

ω2

)−→
k2

]
. Nevertheless, one must recall that the ω and

−→
k variables must be re-

placed by corresponding propagating mode for which they are multiplying ( ~k1 or ~k2) in the expression ∂[ωε̂(ω,
−→
k )]

ω .

Another property that eases the calculation is the fact that multiplying a wave vector ~ki by
(
I −

−→
k ⊗
−→
k

−→
k

2

)
yields

to zero, by the implicit definition of the transverse permi�ivity term.

Clearly, in the dielectric interface, it results that ∂[ωε̂]
ω = ε0εd since the dielectric response is a constant.

At this point, it only remains the assignment of the integral limits in the normalization expression. Hence, it is

assumed that the metal slab has a general length L along the x̂ and ŷ direction and that it has no limitation in

the ẑ direction, i.e.,
L∫
0

dx
L∫
0

dy
∞∫
−∞

dz. Since the wave decaying grows very rapidly as one moves further away

from the slab, the limits in the ẑ direction can be considered as a good approximation. Finally, the normalization

a�er some algebraic manipulation results in

1

2
ε0

L∫
0

dx

L∫
0

dy



0∫
−∞


(∣∣∣−→k1E1

∣∣∣2 +
−→
k2

∗
·
−→
k1E2

∗E1

)(
εb +

ωp
2

ωnk2

)
+

(∣∣∣−→k2E2

∣∣∣2 +
−→
k1

∗
·
−→
k2E1

∗E2

)(
2
ε2bωp

2

ωnk2

)
 dz

+
∞∫
0

εd

∣∣∣−→k3E3

∣∣∣2dz


= 1 (3.34)

One can further simplify the above expression, noting that inside the integral no term depends on the co-

ordinates x and y, i.e.,
L∫
0

dx
L∫
0

dy = L2. In addition, if the wave vectors ~ki and the Ei are replaced by their

expression presented above, it is easily extracted the integrals over z, leading to the Eq. 3.35.

1

2
L2ε0

 |A2|2
(
k2
‖ + k2

‖.l

)
ω2εb

2

k‖,lω2
p

+
|A1|2k‖

(
ω2
p + εbω

2
)

ω2
+A∗2A1k‖

(
εb +

ω2
p

ω2
+

2ε2
bω

2

ω2
p

)
+ |B|2k‖

 = 1

(3.35)

In fact, in the la�er equation was used one of the boundary conditions relating A1 with A2 to realize that

A∗1A2 = A1A
∗
2, which allowed to group both terms. Furthermore, it is admi�ed that the dielectric substrate is

vacuum (εd = 1) and that the bound charge contribution for the metal permi�ivity is εb = 1 for a ma�er of

simplicity.
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In these conditions, the linear system of equations that determine the normalization constants is fully deter-

mined and the expressions for these coe�icients may be found in Eq. 3.36. This solution results from the com-

bination of the normalization equation Eq. 2.53 with the two of the three equations derived from the boundary

conditions (e.g., −A1εT (ω)/εd = B and A1 + A2 = B), which form a linear independent equation’s system.

In fact, apart from one degree of freedom regarding the arbitrary initial phase, the normalization constants are

well determined and the initial phase is chosen in such a way that it leads to Eqs. 3.36a, 3.36b and 3.36c.

A1 =

√
2

L2ε0√
k‖εT (ω)

2
+ k‖

ω2+ω2
p

ω2 + (1 + εT (ω))
2 ω2

ω2
p

k2
‖+k

2
‖.l

k‖,l
− k‖ (1 + εT (ω))

(
1 + 2ω2

ω2
p

+
ω2
p

ω2

) (3.36a)

A2 = −
(1 + εT (ω))

√
2

L2ε0√
k‖εT (ω)

2
+ k‖

ω2+ω2
p

ω2 + (1 + εT (ω))
2 ω2

ω2
p

k2
‖+k

2
‖.l

k‖,l
− k‖ (1 + εT (ω))

(
1 + 2ω2

ω2
p

+
ω2
p

ω2

) (3.36b)

B = −
εT (ω)

√
2

L2ε0√
k‖εT (ω)

2
+ k‖

ω2+ω2
p

ω2 + (1 + εT (ω))
2 ω2

ω2
p

k2
‖+k

2
‖.l

k‖,l
− k‖ (1 + εT (ω))

(
1 + 2ω2

ω2
p

+
ω2
p

ω2

) (3.36c)

To gain some insights regarding these abstract formulas, the analogy with the ones for a local approach of

the surface plasmons can be made, where the normalization constants are given by |A1| = |B| = 1√
2L2ε0k‖

and A2 = 0 (since the longitudinal wave is not predicted by the Drude’s model) [38]. Indeed, if the obtained

constants are evaluated at the surface plasmon frequency the results match exactly the local approach. In order

to compare the values of these coe�icients over the frequencies near the surface plasmon resonance, it is plo�ed

the values of A1, A2 and B, in the Figure 3.8. Their absolute value will also be needed for the spontaneous

emission computation for the non-local SPP, reason why it is represented in Figure 3.9, from where, in particular,

it is discerned that for frequencies near ωsp, |B| presents a small variation.
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Figure 3.8: Plot of the normalization constants over the normalized frequency ω/ωp for the frequencies in the
interval ω ∈ [0, 1.5ωp]. The red, orange and green curves are associated with the constants A1, A2 an B,
respectively. Their value is also normalized to 1√

2L2ε0k‖
(value of the constants for the local SPP in the quasi-

static approximation at ω = ωsp). Is was assumed a silver slab with β ≈ 0.0036 × c, with c the speed of
light.

Furthermore, the nonlocality has influence in the value of these coe�icients over the frequency, through the

wave vectors k‖,l and k‖ as one may check from the dispersion equation. However, if these values are normalized
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Figure 3.9: Plot of the absolute value of the normalization constants over the normalized frequency ω/ωp for
the frequencies in the interval ω ∈ [0.5ωp, 1.5ωp]. The red, orange and green curves are associated with the
constants |A1|, |A2| an |B|, respectively. Their value is also normalized to 1√

2L2ε0k‖
(value of the constants for

the local SPP in the quasi-static approximation at ω = ωsp). Is was assumed a silver slab with β ≈ 0.0036× c,
with c the speed of light.

by the value for the local scenario in the quasi-static approximation, 1√
2L2ε0k‖

, then an interesting feature arises

when computing the plot of the coe�icients for di�erent values of β. In the case where the normalization is made,

one may further check that the plots do not modify their shape by varying the di�usion strength. However, on

the other hand, if no normalization is applied, then the graphics, that are presented in Figures 3.10, 3.11 and

3.12, vary with the variation of β, wherein the local limit is observed that every coe�icient tends to zero for any

given frequency. Hence, this implies that the dependence of these normalization constants with β is essentially

proportional to 1√
k‖
∝
√
β, that indeed tends to zero as β goes to zero.
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Figure 3.10: Plot of the normalization constant A1 over the frequency interval ω ∈ [0.5ωp, 1.5ωp] for di�erent
values of β. The black, green, orange and blue curve correspond to di�usion strengths of β

c = 10−2,βc =

10−3,βc = 10−4,βc = 10−8, respectively. The coe�icient was normalized to 1√
L2ε0

.

Apart from one degree of freedom, regarding the arbitrary initial phase, the normalization constants are well

determined and the initial phase is chosen in such a way that it leads to Eqs. 3.36a, 3.36b and 3.36c.

Returning to the quantization of the SPP Electromagnetic field, one may notice that since all the constants

are well determined, the electric field operator may be wri�en down immediately. This is accomplished by

resorting to the habitual expression of the electromagnetic field operator, which for the sake of convenience is
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Figure 3.11: Plot of the normalization constant A2 over the frequency interval ω ∈ [0.5ωp, 1.5ωp] for di�erent
values of β. The black, green, orange and blue curve correspond to di�usion strengths of β

c = 10−2,βc =

10−3,βc = 10−4,βc = 10−8, respectively. The coe�icient was normalized to 1√
L2ε0
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Figure 3.12: Plot of the normalization constant B over the frequency interval ω ∈ [0.5ωp, 1.5ωp] for di�erent
values of β. The black, green, orange and blue curve correspond to di�usion strengths of β

c = 10−2,βc =

10−3,βc = 10−4,βc = 10−8, respectively. The coe�icient was normalized to 1√
L2ε0
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rewri�en above in Eq. 3.37, where Enk(r) corresponds to the nk mode of the electric field, whose expression is

found at 3.20.

Ê (r) =
∑
ωnk>0

√
~ωnk

2

(
ânkEnk(r) + â†nkE∗nk(r)

)
(3.37)
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Chapter 4

�antum Model Description For
Light-Ma�er Systems

4.1 Two-level Atom Approximation

The present Section a�empts to conduct a simplified quantum analysis of an atom, whose purpose is to

perform an examination on the interactions between the atom and the Electromagnetic field modes of the non-

local surface plasmons. As it is well known, an atom is constituted by a positively charged nucleus and by

electron(s) that is(are) associated with a corresponding orbital. Plenty of work [22, 59, 32] dedicated to the

study of atoms has been developed over the years. Yet, even for the simplest problem (hydrogen atom), a complex

treatment is still required to derive the eigenstates and the energy levels. In these approaches, concepts such

as the quantum numbers (n, l,ml,ms) and the energy degeneracies produced by symmetries of the atom arise

naturally and are discussed in detail at [59, 32]. Leaving aside all these interesting but rather complex properties

of an atom, the study to be developed will seek to simplify as much as possible its mathematical representation

by applying the Two-Level Atom (TLA) approach, which will be developed below.

The two-level approximation model [60] is the elected approach to take in quantum optics when dealing with

atom-light interactions, since it reproduces the important features [61] of the system such as the Spontaneous

Emission and the Rabi oscillations. This approximation considers that the real structure of an atom, containing an

infinite number of energy levels, can be well described at some extent by one having only two energy levels [60].

This approximation is supported by two other considerations [62]. The first assumes that the interaction between

the atom and the radiation fields are weak enough to introduce the Dipole Approximation (DA) (consult [22]

for derivation of DA) that will be addressed further. The second assumes that the frequency of the interacting

Electromagnetic field, ωEM , is near to the resonance transition frequency ω0 of the two energy levels considered

and detuned from the resonant frequency of any other possible transition [63]. Here, the resonant frequency

transition is related to the absolute energy di�erence, Egap = ‖En − Em‖, between two given energy levels n

and m by ωnm = Egap/~. In fact, it is quite well known from the past literature [60] that the transitions, which

occur due to the radiation interaction, have their main contribution from the field’s frequencies that are near

the resonant frequencies transitions, neglecting the rapidly oscillatory terms. This la�er assumption is formally

designed by Rotating Wave Approximation (RWA) and it will be later discussed.

The mathematical representation [64] of the two-level atom is formally analogous to the one of a 1
2 spin

particle in an external magnetic field, since the spin can either be parallel or anti-parallel to the field, leading

to two di�erent eigenenergy levels. The details of the spatial dependence in the wave-functions regarding the
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eigenstates of the TLA shall be ignored and are retained within the bra 〈i| and ket |i〉 notation.

A two-level energy atom is described (at Figure 4.1) by a two-dimensional state space spanned by the two

energy eigenstates |e〉 and |g〉 corresponding to the excited and the ground states, respectively. The two states

constitute a complete orthonormal basis such that |e〉 = (1 , 0)
T and |g〉 = (0 , 1)

T . The Hamiltonian operator

of the two-level atom is simply given by

HAt = Ee |e〉 〈e|+ Eg |g〉 〈g| (4.1)

whereEe andEg are the only two energy eigenvalues for the excited and ground states, correspondingly. More-

over, the energy eigenvalues are such that Ee = (~ω0)/2 and Eg = −(~ω0)/2, see Figure 4.1. One should

bear in mind that, since no absolute energy can be measured, the eigenenergies values are arbitrary and may be

chosen according to each preference, whereas the energy di�erence must stay invariant to such alternative.

Figure 4.1: Two level atom representation with the below state corresponding to the ground state and the upper
one to the excited state.

The usual operators introduced regarding the subject of the two-level atom are the σ+ and σ−, which are

defined as

σ+ = |e〉 〈g| =

(
0 1

0 0

)
(4.2a)

σ− = |g〉 〈e| =

(
0 0

1 0

)
(4.2b)

Their physical consequences are perceptible as one applies these operators to a general state ψ = ce |e〉 +

cg |g〉, whence the σ+ yields to the excitation of an electron on the ground state to the excited one, and σ−

produces the opposite transition.

In addition, the Pauli matrices [65], presented at Eq. 4.3, are typically introduced because they provide a

convenient basis.

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(4.3)

The subscript in these matrices is associated with the respective spatial coordinate. The Hamiltonian in this

notation may be compactly wri�en asHAt = ~ω0

2 σz . In contrast toσ+ andσ−, σz is a Hermitian operator and

its expectation value is an observable physical quantity. Also, its expectation value, 〈ψ |σz|ψ〉 = |ce|2 − |cg|2,

gives the inversion w of the atom, since |ce|2 and |cg|2 are the probabilities for finding, respectively, the atom in

state |e〉 or |g〉 upon a measurement. One may find out that |ce|2 + |cg|2 must be equal to 1, since the TLA can

only be found either in the ground or in the excited states.
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4.2 Light-Ma�er Interactions

4.2.1 Dipole Approximation

With the quantum description of the two-level atom and the surface plasmons addressed, it is now time to

discuss how a quantum object (fermion) interacts with the electromagnetic fields’ modes, and further ahead

with the non-local SPP in specific. Although a rigorous examination would require the inclusion of the vacuum

modes in the system interaction, this will not be part of the following approach because the coupling between

the atom and the SPP modes is considered to be stronger.

In the literature [66, 67], the light-ma�er interactions have been subject of an extensive analysis. For the

simple case of an electron trapped in a binding atomic potential V(r) and subjected to the action of an external

electromagnetic field, an Hamiltonian of the system HTot can be formulated as appears in Eq. 4.4.

HTot =
1

2m
[P− e0A (r, t)]

2
+ eU (r, t) + V(r) (4.4)

The A (r, t) and U (r, t) are the vector and scalar potential of the electromagnetic field, respectively, and e0 is

the elementary charge. It has been shown [22, 68] that if the light interaction is a weak perturbation, HTot can

be expressed by the sum of three Hamiltonian parcels displayed at Eq. 4.5, where HAt = 1
2mP2 + V(r) is the

unperturbed atom Hamiltonian contribution, HEM the electromagnetic Hamiltonian and HInt = −~µ · ~E(r0, t)

the Hamiltonian due to the interaction between the last two unperturbed systems. Here r0 corresponds to the

position of the atom’s center of mass in an arbitrary coordinate system, which is chosen to be the one of Figure

3.2.

HTot = HAt + HEM + HInt (4.5)

In the la�er expression, ~E(r0, t) stands for the electric field operator and ~µ corresponds to the electric dipole

moment operator given by ~µ = −e0~r, assuming, therefore, a similar format to that of a classical electrostatic

potential. As a ma�er of fact, the interaction Hamiltonian only assumes that form if the frequency of the electric

field is close to the resonant frequency ω0 of the transition in the two-level atom. One should not confuse the

position r0 with the operator ~r. The la�er is identical to a vector with the atom center of mass (positive charge)

as the initial point and the negative charge (electrons) as the terminal point. Due to the quantum mechanical

uncertainty in the electron and atom positions, ~r must be an operator rather than a vector.

Since the electron is not at the same position as the nucleus but at its surroundings, the interaction Hamil-

tonian should have a dependence on r (the electron position in the chosen coordinate system). However, if the

wavelengths associated with the light modes are bigger than the atomic boundary distance, the Dipole Approxi-

mation (DA) [60, 66, 68] can be adopted. The DA basically states that the electron ”sees” a constant electromag-

netic field along their orbitals and therefore its position r ≈ r0, i.e., which in fact yields to HInt ≈ −~µ · ~E(r0, t).

Since the size of the atoms are the 10−10[m] order, the maximum frequency in the validity region of DA lies in

the ultraviolet spectrum. Thus, it is suitable for most plasmonic structures since ωsp is found below this range.

Notice that none atom or atomic levels were specified for the present work. In fact, this conceptual problem

only demands that the atoms (or either quantum dots1) must have a reasonable structure that allows the TLA

approximation and a resonant frequency transition near the frequency of interest ωsp. The reason behind this is

that the important task here is to observe the consequences of the interaction on the spontaneous emission rate

of the SPP and its di�erences for a range of frequencies near the surface plasmon resonance, since the density

of states in the Local Density of States is higher near ωsp.

1�antum dots[69] are semiconductor nanocrystals and are sometimes designed as artificial atoms to emphasize that have bound,
discrete electronic states confined in all three spatial dimensions. The quantum dot has a discrete quantized energy spectrum and their
tunable band gap varies with the particle size, which proportionates a unique opportunity to consider it as an artificial two-level atom with
a resonant frequency near the ωsp [70, 71].
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Moreover, it is useful to write the dipole moment operator in terms of the excited and ground state basis,

being represented in a matricidal structure in 4.6.

~µ = −e0

(
〈e |̃r| e〉 〈e |̃r| g〉
〈g |̃r| e〉 〈g |̃r| g〉

)
(4.6)

The electrons possess a symmetrical distribution with respect to the nucleus [72]. Therefore, it is perfectly

reasonable to predict that the 〈e |̃r| e〉 and 〈g |̃r| g〉 will vanish since the electric displacement operator ~r is a

vector and so, for two symmetric positions, it will have opposite signals. This may be be�er explained either

in the grounds of the parity or by the Wigner-Eckart theorem [22]. Consequently, the electric dipole moment

yields to Eq. 4.7, where ~γ = e0 〈g |̃r| e〉 and ~γ∗ = e0 〈e |̃r| g〉, due to the Hermitian property of the electric dipole

moment operator.

~µ = −
[
~γσ− + ~γ∗σ+

]
(4.7)

Besides, as one may check by the expectation value of ~µ in Eq. 4.8, this only remains not-null if the system is in

a superposition of the excited and the ground state.

〈ψ |~µ|ψ〉 = −e
[
c∗gce 〈g|~r |e〉+ c∗ecg 〈e|~r |g〉

]
(4.8)

4.2.2 Rabi Oscillations

Before proceeding with the analysis of the SPP, it is worth to address the classical analogous system of a

two-level atom and a classical monochromatic electrical field of the form ~E = E0
~ξ
[
ei(kr0−ωt) + e−i(kr0−ωt)

]
.

This is a typical introductory example found in quantum optics books such as [68, 73], in which is observed the

Rabi Oscillations phenomenon. An extensive literature has been devoted to this phenomenon, which is endorsed

experimentally either by its detection in observations in single electron spin [74] or in a single molecule [75]. As

it is evident the HEM is here dropped and for the case where ~µ and ~ξ are parallel, the interaction Hamiltonian

is reduced to

HInt =
[
γσ− + γ∗σ+

]
E0

[
ei(kr0−ωt) + e−i(kr0−ωt)

]
(4.9)

Moreover, to understand the time evolution of this system is particularly convenient to define a wave function

|ψ(t)〉 as in Eq 4.10.

|ψ(t)〉 = ce(t)e
−iω0

2 t |e〉+ cg(t)e
i
ω0
2 t |g〉 (4.10)

This choice becomes clear once the |ψ(t)〉 is plugged in the Schrödinger equation, since, due to the two-level

atom, the time evolution is completely incorporated by the exponential terms, whereas the derivative terms in

Eq. 4.11 are associated with the electric dipole moment.

i~
(
ċe(t)e

−iω0
2 t |e〉+ ċg(t)e

i
ω0
2 t |g〉

)
= HInt

(
ce(t)e

−iω0
2 t |e〉+ cg(t)e

i
ω0
2 t |g〉

)
(4.11)

Furthermore, it is straightforward to check that, by multiplying on both sides of Eq. 4.11 by 〈e| and 〈g| and

a�ending to Eq. 4.9, the following two distinct di�erential equations can be obtained

ċe(t) = − i
~
γ∗E0

[
ei(kr0−ωt) + e−i(kr0−ωt)

]
cg(t)e

iω0t (4.12a)

ċg(t) = − i
~
γ E0

[
ei(kr0−ωt) + e−i(kr0−ωt)

]
ce(t)e

−iω0t (4.12b)
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A�erward, as it is common, it is employed the RWA, which fundamentally says that for large enough time

intervals, the terms rotating with higher frequencies, ω0 +ω, seem static, i.e., their mean value is approximately

zero, and, thus, only the slow rotating terms 4 = ω − ω0 are considered. For a deeper understanding of the

RWA and their subtle use case variations please consult [64, 76]. Also, the slow rotating terms are said to be

energy conserving terms [68].

In this approximation it is rather easy to find a general solution for the motion equations 4.12, since both

the expressions can be separated into to second order di�erential equations, whose general solution is given in

Eqs. 4.13.

ce(t) = e−i
∆
2 t
[
A1 cos

(
Ω̃Rt

)
+A2 sin

(
Ω̃Rt

)]
(4.13a)

cg(t) = ei
∆
2 t
[
B1 cos

(
Ω̃Rt

)
+B2 sin

(
Ω̃Rt

)]
(4.13b)

In the la�er, the A1, A2, B1 and B2 are arbitrary constants, Ω̃R =

√
∆2+4ΩR2

2 is a general Rabi oscillation

frequency and ΩR = |γ|E0

~ is the actual Rabi oscillation frequency that appears at the resonance. In order to seek

a particular expression for the problem, it must be imposed that the probability of electron to be found in any

energy level at any time is always equal to one (i.e. |ce (t)|2 + |cg (t)|2 = 1).

Likewise, an initial condition is required, in which for the present case it will be deliberately assumed that

the electron at the time t = 0 is in the excited state and consequently, |ce (t = 0)|2 = 1 and |cg (t = 0)|2 = 0 .

Lastly, an arbitrary phase is adopted such that the finals expressions in Eq. 4.14 are produced.

ce(t) = e−i
∆
2 t

[
cos
(

Ω̃Rt
)

+ i
∆

2Ω̃R
sin
(

Ω̃Rt
)]

(4.14a)

cg(t) = −iei∆
2 te−ikr0Arg(γ)

ΩR

Ω̃R
sin
(

Ω̃Rt
)

(4.14b)

Moreover, in the resonance regime (ω0 = ω) one has ∆ = 0 and Ω̃R = ΩR which consequently simplify the

transition temporal equations into the following formulas

ce(t) = cos
(

Ω̃Rt
)

(4.15a)

cg(t) = −ie−i~k·~rArg(γ) sin
(

Ω̃Rt
)

(4.15b)

These oscillations reveal the intrinsic periodicity of the transitions produced by an external field mode with a

frequency near the resonance. Although it will not be the same, this property already presents itself an insightful

behavior regarding the interaction of the SPP with the two-level atom.

4.3 Spontaneous Emission of Non-local SPP in the Presence of a TLA

Moving now into one of the goals of this dissertation, a formulation of the time evolution for the interaction

of the non-local SPP with the two-level atom will be carried right away.

However, for the situation where the Electromagnetic field is described by an operator, the time evolution

of the eigenstates of the system is not so trivial to formulate because now the field modes have their own basis

|k〉. A viable procedure to solve this problem is to work in the Schrödinger Picture, where the time evolution is all

contained within the eigenstates, and, a�erward, to resort to the Time-Dependent Perturbation Theory (TDPT)

at its first order term. So, considering that the unperturbed system H0 is formed by the two-level atom plus the

Electromagnetic field Hamiltonians (i.e. H0 = HAt + HEM ) and that HInt is the perturbation of system, which

must be much smaller than H0 to guarantee the correct employment of the TDPT.

On intuitive grounds one may claim that the HAt and HEM commute, which is equivalent to say two impor-

tant features: that a common base exists and is given by the tensorial product |n, k〉 = |n〉⊗ |k〉 where n stands
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for the two-level eigenstates and k for the states corresponding to the SPP normal modes; the time evolution

for the TLA and the SPP may be solved independently as if they were isolated, from where it may be adopted

the following wave-function

ψ0 (r, t) =
∑
n,k

cn,k e
−i (En+Ek)

~ t |n, k〉 (4.16)

where |n, k〉 and |cn,k|2 are, respectively, the spatial dependence and the density probability for each orthogonal

mode of the wave-function. En is the eigenenergy of the n state of the TLA and Ek is the eigenenergy of the k

mode of the SPP.

Although this is only valid for the unperturbed system H0, the strategy to solve the temporal evolution of

the system accounting with the perturbation is to assume that the system modification along the time can

be fully captured just by including a time dependence in the coe�icient cn,k(t). By doing that the new wave-

function (in Eq. 4.17) can be inserted in the Schrödinger equation (in Eq. 4.18) resulting, a�er some simple algebra

manipulation and by simplifying the notation of |n, k〉 modes in merely |n〉 (without any loss of information),

into Eq. 4.19.

ψ (r, t) =
∑
n,k

cn,k (t) e−i
(En+Ek)

~ t |n, k〉 (4.17)

i~
∂

∂t
ψ (r, t) = HTot ψ (r, t) (4.18)

i~
∑
n

ċn (t) e−i
En
~ t |n〉 = HInt

∑
n

cn (t) e−i
En
~ t |n〉 (4.19)

Furthermore, by recalling that the interaction Hamiltonian can also be decomposed as in Eq. 4.20, one may

check that by multiplying on the le� side of Eq. 4.19 by 〈f | and isolating the term ċf (t), it is achieved the

equality present in Eq. 4.21.

HInt =
∑
m

∑
n

|m〉 〈m|HInt |n〉 〈n| (4.20)

ċf (t) = − i
~
∑
m

〈f |HInt |n〉 cn (t) e−i
(En−Ef)

~ t (4.21)

To find out the structure of cn(t), it is imposed the initial condition that, at the time instant t = 0, the system

is found in the state |i〉, i.e., cn(t = 0) is zero for all n except for n = i, being equal to one in this case. The first

term of the TDPT is now used by a�irming that cn(t) can be approximated by its value at the initial condition

instant. Thus, the integration of ċf (t) yields to the expression in Eq. 4.22, which is a very well known formula

denominated by Fermi’s Golden Rule (FGR) [72, 77].

cf (t) = − i
~

t∫
0

〈f |HInt |i〉 e−i
(Ei−Ef)

~ t′dt′ (4.22)

The FGR is used to compute the probability over time of an initial state |i〉 ending up in a final state |f〉 and the

foundation behind its derivation is associated with the first order term of the TDP theory. Despite the extensive

use of this method by researchers, it is important to emphasize that the validity of the FGR depends on the time

intervals that are considered [78].

Therefore, to compute the probability of the system to transit from the initial state |i〉 into the final state
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|f〉, which is defined as Pi→f (t) = |cf (t)|2 and may also be wri�en as in Eq. 4.23 through the FGR.

Pi→f (t) =
1

~2

∣∣∣∣∣∣〈f |HInt |i〉
t∫

0

e−i
(Ei−Ef)

~ t′dt′

∣∣∣∣∣∣
2

(4.23)

For the present case, the interaction Hamiltonian has no time dependence because we are working in the

Schrödinger Picture. Therefore, the integral is solvable and leads to Eq. 4.24, whereωfi =
Ef−Ei

~ is the introduced

variable with frequency units associated with the di�erence between the eigenenergies of the final and initial

state, correspondingly.

Pi→f (t) =
t2

~2
|〈f |HInt |i〉|2sinc

(ωfi
2
t
)2

(4.24)

At this point, one may wonder which initial and final states are we interested in. To become clear, the goal

is to calculate the spontaneous emission rate. Thus, the initial state must correspond to the excited state of the

TLA and to absence of photons, i.e, the initial state is |e, 0〉. On the other hand, the final state corresponds to the

TLA being on the ground state and to the emergence of one (and only one) SPP photon, that can be represented

as
∑
k

|g, 1k〉, where the subscript k is associated with all possible light modes. Therefore, the transition prob-

ability for this particular case is given as in Eq. 4.25, where basically HInt is substituted by the electric dipole

momentum and the electric field operators, and the final state becomes a sum over all possible SPP modes.

Pi→f (t) =
t2

~2

∑
k

∣∣∣∣∣〈g, 1k| [−→γ σ− +−→γ ∗σ+
]
·
√

~ωk
2

(
âk
−→
Ek(r) + â†k

−→
E∗k(r)

)
|e, 0〉

∣∣∣∣∣
2

sinc
(ωfi

2
t
)2

(4.25)

It is trivial to deduce that the only the term resulting from the distributive multiplication that remains non-

zero is the one containing the σ− and â†k operators. Consequently, the initial and final energies are Ei = ~ω0

2

and Ef = ~
(
−ω0

2 + ω
)
, respectively, where ω is the frequency extracted from the relation â†k(t) = eiωt â†k .

Bearing this in mind the transition probability comes as visible in Eq.4.26.

Pi→f (t) =
t2

~2

∑
k

∣∣∣∣∣
√

~ωk
2
~γ·
−→
Ek(r)

∣∣∣∣∣
2

sinc
(ωfi

2
t
)2

(4.26)

A rigorous analysis regarding the FGR is exploited at [77, 78], where is used the premise of le�ing t→∞ and

that ωfi ≈ 0 which is to say that the frequency regime is near the resonance. These considerations allow the

replacement of the sinc() by a δ function, since the former function becomes sharply peaked at the resonance.

Also, a�ending to the known integral formula
∞∫
−∞

dω 2
π

sin2(ωt2 )
ω2t = 1, it is quite simple to check that the correct

normalization leads to the expression Eq. 4.27.

Γsp (ω) =
2π

~2

∑
k

∣∣∣∣∣
√

~ωk
2
~γ·
−→
Ek(r)

∣∣∣∣∣
2

δ (ωfi) (4.27)

The la�er equation is known as the transition rate, defined as Γsp (t) = lim
t→∞

Pi→f (t)
t , and specifically, in this

case, measures the number of photons emi�ed per time unit. This is a result that is widely employed in atomic

transitions problems [79], where the frequency is near the resonance.

Leaving the details of the Electric field structure aside, it is known that the possible wave-guided modes of

the surface plasmons can propagate either along the x̂, or the ŷ direction. Therefore, it is necessary to account

with all these modes (
∑
kx,ky

), which by invoking the periodic boundary conditions admits the replacement of the

sum by an integral (
∑
kx,ky

→ L2

(2π)2

∫∫
dkydkx). Moreover, due to properties of the Dirac delta function, the only

contribution for the integral comes from the wavevector k0 associated with the frequency of the electric field
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ω = ω0. Bearing this in mind, it becomes useful to change the variables coordinate system from Cartesian to

Polar (kx = k cosφ and ky = k sinφ), since the computation of the integral is now limited to a circumference of

radius k = k0. Here, k0 corresponds to k‖ (having the dispersion equation mentioned in Eq. 3.18) since ω0 = ω.

Consequently, the expression of the spontaneous emission is modified, as one may check in Eq. 4.28.

Γsp (ω) =
L2

2π~2

2π∫
0

dφ

∞∫
0

k0

∣∣∣∣∣
√

~ω0

2
~γ·
−→
Ek0

(r)

∣∣∣∣∣
2

δ (ω − ω0) dk (4.28)

Also, resorting once again to the property of the Dirac delta (
∫
f (x) δ (g (x))dx = f(x0)

|g′(x0)| ), one a�ains to

the result at Eq. 4.29.

Γsp (ω) =
L2

2π~2

2π∫
0

dφk0

∣∣∣∣√~ω0

2 ~γ·
−→
Ek0

(r)

∣∣∣∣2∣∣∂ω0

∂k

∣∣ (4.29)

In addition, one may also write ∂ω0

∂k as the gradient of ω0 since the gradient of a function in these coordi-

nates is given by ∇f = ∂f
∂k k̂ + 1

k
∂f
∂θ θ̂ and ω0 has no dependence in the θ. Furthermore, one may yield to Eq.

4.30 a�ending that the angular integration leads to a multiplication factor of 2π, since the system is rotational

invariant over θ.

Γsp (ω) =
k0L

2

~2

∣∣∣∣√~ω0

2 ~γ·
−→
Ek0

(r)

∣∣∣∣2
|∇ω0|

(4.30)

The derivative ∂ω
∂k is easily extracted, as shown in Eq. 4.31, by using the dispersion equation deduced in the

previously Chapter 3.

∂ω

∂k
=
β

2
+

1

2

kβ2√
k2β2 + 4ω2

sp

(4.31)

Furthermore, it is assumed that for the sake of simplicity the electric dipole vector is aligned in the ẑ direction.

This implies that the only component of the electric field operator that will contribute to the dot product is the

one parallel to ẑ. In this condition and le�ing unspecified the function of the electric dipole element γ, the

transition rate becomes Eq. 4.32.

Γsp (ω) =
k0L

2ω0

~
|γ|2|Ek0

(r0)|2∣∣∣∣β + k0β2√
k2

0β
2+4ω2

sp

∣∣∣∣ (4.32)

Therefore, the last term to compute in order to obtain the transition rate is the square of the electric field

in the ẑ direction, where its only relevant branch is for z > 0, since the TLA is above the metal slab. It is

straightforward to check that this term yields to the expression Eq. 4.33, which at last leads to the transition

rate in Eq. 4.34.

|Ek0
(r0)|2 = k2

‖ |B|
2
e−2k0r0 (4.33)

Γsp (ω) =
k3

0L
2ω0

~
|γ|2|B|2e−2k0r0∣∣∣∣−β + k0β2√

k2
0β

2+4ω2
sp

∣∣∣∣ (4.34)

As mentioned earlier, because of the chosen coordinate system, the position of the TLA nucleus can be repre-

sented in terms of z, being its length r0.
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In addition, as it was stated before and as one may check in Figure 3.9, the normalization coe�icient |B| is
almost constant for frequencies in the interval [ωsp, ωp]. In this regime, |B| has a similar value to that of the

local approach ( 1√
2L2ε0k‖

). Consequently, the emission rate in this approximation is given by Eq.4.35.

Γsp (ω) =
k2

0ω0

2~ε0β

|γ|2e−2k0r0∣∣∣∣1 + k0β√
k2

0β
2+4ω2

sp

∣∣∣∣ (4.35)

The variation of the emission rate for di�erent values of the atomic frequency ω0 is displayed in Figure 4.2,

where, besides the formula in Eq. 4.34, it was also plo�ed the curve with the approximated expression (Eq.

4.35). It is observed that the plot has a peak near the ωsp, being practically zero, elsewhere. Furthermore, the

approximated expression is observed to be slightly above the amplitudes of the exact one, where the maximum

amplitude is around the 3.6× 103 THz which is about 130 times lower than the surface plasmon frequency. For

the computation of the emission rate, it was considered that the distance between the plasmonic interface and

the TLA r0 = 10nm, which is an overstatement since quantum dots themselves typically have diameters of a

few nanometers scale [80]. However, this assumption is imposed to ensure a strong coupling, which one may

infer by observing Figure 4.3. As r0 decreases, the emission rate peak increases its amplitude and widens its

width (i.e., interval of frequencies whose contribution is relevant also increases). This seems reasonable since

the closer the unperturbed systems are from each other, the more intense their interaction becomes. In addition,

the electric dipole moment employed for the computation of the emission rate corresponds to the Rydberg atoms

[81]. These atoms are very appealing because of their strong responses in the presence of electric fields, which

is explained by the high electric dipole moment value which is approximately γ ≈ 1212× 10−30 Cm ≈ 364Cm

[81]. Although the typical values of the electric dipole moment for most of the atoms and molecules are of a

few Debye, the elected quantum object is the Rydberg atom, because it allows strong couplings between the TLA

and the SPP to be achieved.

Also, from Eq. 4.35 it is possible to infer that at ω = ωsp the emission rate will vanish, since the wave vector

also vanishes at that frequency. Nevertheless, the plot in Figure 4.2 shows that for frequencies slightly above

ωsp the emission increases extremely fast and has its maximum value in that region. This has some similarities

with the emission rate in the local SPP model (that is commented further), since that, although the peak is not

exactly a Dirac delta at ω = ωsp, it possesses a narrowed finite peak in the vicinity of that frequency.
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4×1015

/ sp

sp[Hz]

Figure 4.2: The graphic shows the Emission rate of the SPP in a non-local silver slab, where ωsp ≈ 2π × 646 ×
1012[Hz] and β ≈ 0.0036c [m] (being c the speed of light). The blue curve corresponds to the exact expression
of the normalization constant (|B|), while the red curve is assigned to the the emission rate formula where |B|
is approximated by 1√

2L2ε0k‖
.

To demonstrate how the presence of the metal slab in the vicinity of a TLA alters the emission rate of this

one, it is made the contrast with the free space emission rate. As strange as it seems, the TLA in free space
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Figure 4.3: The graphic shows the plot of the emission rate of the SPP in a non-local silver slab, for di�erent
values of r0. The red, blue, green and orange curves correspond to di�usion strengths of r0 = 5 nm, r0 = 10 nm,
$r0 = 15 nm and r0 = 20 nm, respectively.

also emits photons through the mechanism of spontaneous emission, although that in this case the formula

[38, 82, 83] is given by Eq. 4.36.

Γ0 (ω) =
|γ|2

3π~ε0

(ω0

c

)3

(4.36)

Hence, the comparison between both emission rates is illustrated in Figure 4.4, where is plo�ed the ratio Γs0/Γ0.

This graphic shows that the emission rate in the presence of the metal substrate can achieve values about 8000

times higher than in the case where it is absent. This is explained by the coupling that exists between the metal

and the atom that allows an energy transfer from the atom to the metal and vice-versa.
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Figure 4.4: The graphic shows the spontaneous emission rate ratio between the nonlocal surface plasmon and
the two dimensional free space spontaneous emission rates. The frequency interval corresponds to the vicinity
of ωsp. It is considered a silver metal slab, where its ωsp ≈ 2π × 646× 1012[Hz] and β ≈ 0.0036c [m] (being c
the speed of light).

Besides the comparison between the emission rate of the non-local metal with the free TLA in free space, it

should also be made the correlation of the derived Γsp with its analogous in the case where a local approach is

employed. If the quasi-static approximation is not employed, one easily confirms, by looking to Eq. 4.28, that

the emission rate is infinite at ω = ωsp and zero otherwise. This happens because ωsp is the only frequency

for which wave modes are supported, and consequently the Dirac δ-function becomes δ (ω − ωsp). In contrast,

Γsp has a high but finite peak in the vicinity of ωsp and allows the emission of photons with di�erent energies

(frequencies), though the higher emission is verified in a short range near the surface plasmon resonance.

In addition, if one uses the Drude’s model to describe the SPP in the electrostatic regime, then the emis-
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sion rate will endorse the form given in Eq. 4.37, wherein its derivation was used the approximation k (ω) ≈√
ω3
sp

2c
1√

ωsp−ω
that is valid for frequencies near ωsp [2, 38].

ΓLocal =
|γ|2e−2k0r0

16~ε0

ω4
sp

(ω0 − ωsp)2
c2

(4.37)

It should not be strange that the interval of frequencies which has more contribution to the emission rate is

near theωsp because of the approximation of the Dirac delta in the Fermi Golden Rule. Indeed, this approximation

implies that the only way to exist emission rate is in the case where the SPP waves have at least one radiation

mode with frequency equal to the atomic frequency ω0. Therefore, this must be intimately linked with the

density of states (addressed in the previous Chapter) which provides a congruent explanation of the Emission

rate, due to the high density that is verified for the frequencies near ωsp.

Furthermore, this also explains why that, unlike to the predictions provided by the local theory where the

emission rate explodes at ω = ωsp, in the spatial dispersive model where no radiation mode is supported is

witnessed no emission of photons. To reinforce this link between the DOS and the emission rate, one can start

by visualizing in Eq. 4.27 that some resemblances with the DOS formula are evident. The la�er equation can

further be rearranged in the convenient form presented in Eq. 4.38 where Eẑ,k(r) is the component of the electric

field parallel to the electric dipole moment, that without loss of generality is said to be in the ẑ direction.

Γ (ω) =
2π

~2

~ωk
2
|γ|2

∑
k

|Eẑ,k(r)|2δ (ωk − ω0) (4.38)

Hence, it is only needed a term with lengths of area (or volume for the 3D analysis) to the DOS formula emerge in

Eq. 4.38. Actually, it is possible to inspect from the formula that gives the normalization of the Electromagnetic

field modes, that since integration in the three dimensional space (
∫
dx
∫
dy
∫
dz ) has units of volume, somehow

the integrand (Enk
∗ · ∂[ωε(z,ω)]

∂ω ·Enk) must have units of m−3, in order to obtain an adimensional scalar. Since

the term ∂[ωε(z,ω)]
∂ω will produce a result with units of permi�ivity, then the square of the electric field must have

the m−3 dependence in its dimensions.

In free space, since the electric field is given by plane waves, it is clear from the modes normalization formula

that |Eẑ,k(r)|2 = 1
3L3ε0

. Hence, one can rewrite the emission rate of the free space in terms of the DOS for the

3D space, which is displayed in Eq. 4.39, where it was used the definition of the DOS present in Eq. 3.22.

Γ0 (ω) =
πω0

3~
|γ|2

ε0
n (ω)3D (4.39)

Similarly, an analogous procedure can be undertaken for Γsp (ω) where the expression of
∣∣Eẑ,k(r)

∣∣2 is al-

ready known and may be reviewed in Eq. 4.33. Thus, the relation between n (ω)2D and Γsp (ω) is clearly given

by Eq. 4.40.

Γ0 (ω) =
πω0k0

2~
|γ|2

ε0
e−2k0r0nsp (ω) (4.40)

This dependence of the emission rate on the density of states justifies the correlation that is observed in their

response over the frequency. Thereby, a system will emit more photons per unit of time in the frequencies that

present a higher DOS. The comparison between Γsp (ω) and Γ0 (ω) can be done in terms of their DOS’s and is

exhibited in Eq. 4.41.

Γsp (ω)

Γ0 (ω)
=

3k0

2
e−2k0r0

nsp (ω)

n (ω)3D

(4.41)

The influence of the nonlocality in the emission rate can be comprehended by inspection of Eq. 4.35. Then,

if one replaces the wave vector in terms of ω, then it can be perceived that at the local limit scenario (β → 0) the
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transition rate has the limit Γβ→0 = 1
β e
−(ω2−ω2

sp)
β . Thus, in the case of having ω 6= ωsp, the limit goes to zero.

Otherwise, the exponential term falls into an indeterminate form, that in the case of being a finite result it will

yield to an infinite emission rate. This is in agreement with the behavior from the local SPP, since the density

of states near the resonance frequency is infinite. In Figure 4.5 the plots of Γsp (ω) for di�erent values of β are

represented, from where it is concluded that as the di�usion e�ects become weaker, the peak in the emission

rate becomes more narrowed around ωsp and amplitude of the maximum increases. A�ending to this behavior

it is reasonable to infer that with β = 0 the Γsp (ω) will become a Dirac delta at ω = ωsp, as the predicted by

the local scenario.
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Figure 4.5: The graphic shows the plot of the Emission rate of the SPP in a non-local silver slab, for di�erent values
of β. The red, blue, green and orange curves correspond to di�usion strengths of βc = 5×10−3, βc = 3.6×10−3,
β
c = 2× 10−3 and β

c = 10−3, respectively.
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Chapter 5

Local SPP - Atom �antum Interaction

5.1 Hamiltonian Reformulation

The interaction that emerges between a TLA and surface plasmon electromagnetic waves, when placing the

atom in the vicinity of a metal slab is examined in this chapter. Moreover, it is intended to observe what the

possible states for such system are and how does the probability of measuring a given state change over time.

Thus, it is imposed that the initial state of the apparatus corresponds to having the TLA in an excited state and

the absence of photon emission (|e, 0〉). This is a mere ma�er-light interaction problem, as seen previously when

discussing the Rabi Oscillations features, although that, in this case, the Electromagnetic field is composed of

infinite quantized harmonic oscillator modes.

Before proceeding to the specific problem situation, is important to revise the general case for a given quan-

tized electromagnetic source. For a basic apparatus containing a TLA and a cavity supporting infinite bosonic

modes associated with infinite di�erent frequencies, the interaction examination imposes an overwhelming bar-

rier to the analytical treatment of the problem. The reason lies in the infinite nature of the light eigenmodes

that does not allow an exact description of the system’s dynamics.

However, the same does not succeed in the case of multi-level atoms interacting with a few quantized light

modes, where plenty of research was already performed [84]. For instance, G. Benivegna et al. at [85] investi-

gated the dynamical details on the interaction of a TLA with several quantized electromagnetic wave modes.

Many complex models to characterize bosonic-ma�er interactions exist as the Dicke model [86]. However,

for this type of problems, the elected approach is the Jaynes–Cummings Model (JCM) [87]. The reasoning behind

it lies in its simpler treatment and the good match that provides between its predictions and the experimental

results. This model has picked the interest of many researchers because it yields reliable insights in areas such as

solid-state physics quantum optics [88]. Examples of this approach applications are the description of ultra-cold

Rydberg atoms interacting with light modes at [88] and the quantum entanglement modeling of atoms that

interact with light fields in a cavity [89].

Yet, the approach that will be carried away is not exactly the JCM because, unlike this one, that uses the

RWA, no approximation is made here. Later on, it will be evaluated the di�erences between the results that the

application of the RWA would lead in comparison to our procedure.

One may question that since our problem contains an infinite sum of SPP light modes, then it would be

una�ainable to reach a solution for the Schrödinger equation. However, for a specific scenario where all the

radiation modes are associated with a unique frequency, the Hamiltonian can be reformulated to a much simpler

version that enables the computation of its time evolution. This feature occurs due to a degeneracy in the light

eigenmodes that enables a modification in the basis. Hence, the SPP waves in the local model can have their

time evolution derived, since they present a density of states that diverges at ω = ωsp. The lossless Hamiltonian
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for the SPP in the quasi-static approximation interacting with the TLA may be wri�en as in Eq. 5.1

Ĥ =
~ωsp

2

∑
ωk>0

(
âkâ†k + â†kâk

)
+
~ω0

2
σ̂z − (γ∗σ̂+ + γσ̂−)· Ê(r0) (5.1)

where the first term of the right side of equation is the electromagnetic field Hamiltonian, the second is the

habitual TLA and the last term represents their interaction.

Therefore, in order to present a new reformulation of the Hamiltonian, the dynamics of the relevant operators

in the Heisenberg picture is computed by a�ending that the time evolution of an operator Ω̂ is given by dΩ̂
dt =

i
~

[
Ĥ, Ω̂

]
. Then, one can easily confirm that either Eq. 5.2 and Eq. 5.3 hold true.

dσ̂−

dt
= −iω0σ̂

− − i

~
γ· Ê(r0)σ̂z (5.2)

dâk
dt

= −iωspâk +
i

~
µ̂·
√

~ωsp
2

E∗k(r0) (5.3)

where the electric field operator is Ê(r0) =
∞∑
k

√
~ωsp

2

(
âkÊk(r0) + â†kÊ

∗
k(r0)

)
. Moreover, it can be represented

compactly by the sum of Ê−(r0) and Ê+(r0), where Ê−(r0) =
∞∑
k

√
~ωsp

2 âkÊk(r0) = Ê
∗
+(r0).

Also, assuming once more that the transition dipole moment operator is oriented along ẑ, one can inspect

that the commutator
[
ẑ· Ê−(r0), ẑ· Ê+(r0)

]
results in Eq. 5.4.

[
ẑ·Ê−(r0), ẑ·Ê+(r0)

]
=

~ωsp
2

∑
k

∣∣∣ẑ·Êk(r0)
∣∣∣2 =

L2

(2π)
2

~ωsp
2

∞∫
−∞

∞∫
−∞

dk2
∣∣∣ẑ·Êk(r0)

∣∣∣2 (5.4)

In the last step, it was invoked the periodical boundary condition method to transform the sum into an integral.

Furthermore, since
∣∣∣ẑ·Êk(r0)

∣∣∣2 = |B|2k2
‖e
−2k‖r0 and the square of the normalization coe�icient at the surface

plasmon resonance is equal to |B (ω = ωsp)|2 = 1
2ε0k2

‖
L2 , then we obtain Eq. 5.5.

[
ẑ·Ê−(r0), ẑ·Ê+(r0)

]
=

~ωsp
16π2ε0

∞∫
−∞

∞∫
−∞

dk‖
2k‖e

−2k‖r0 (5.5)

The integral of Eq. 5.5 is integrable by parts, from where the equality,
∞∫
−∞

∞∫
−∞

dk‖
2k‖e

−2k‖r0 = π
2

1
r3
0

, can be

extracted. Thereby, the commutator is simply given by Eq. 5.6.[
ẑ·Ê−(r0), ẑ·Ê+(r0)

]
=

1

32π

~ωsp
ε0r3

0

(5.6)

We are now able to introduce a normalized operator ĉk (defined at Eq. 5.7), that has a significant contribution

to the reformulation of the Hamiltonian.

ĉk =

√
32πr3

0ε0

~ωsp
ẑ·Ê−(r0) (5.7)

Besides, it has the analogous commutation relation property of the bosonic operators since
[
ĉk, ĉ

†
k

]
= 1.

To compute the dynamics of ĉk is convenient to first determine the time evolution of Ê−(r0), that is exhibited

in Eq. 5.8.

dÊ−(r0)

dt
= −iωspÊ−(r0) + i

ωsp
2

∞∑
k

Êk(r0)µ̂· Ê∗k(r0) (5.8)
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So, merely by combining the Eq. 5.8 and the definition of ĉk at Eq. 5.7, and noticing that
∑
k

∣∣∣ẑ· Êk(r0)
∣∣∣2 =

1
16πε0r3

0
, the dynamics of ĉk are simply given by 5.9.

dĉk
dt

= −iωspĉk +
i

~

√
~ωsp

32πε0r3
0

(
γ∗σ̂+ + γσ̂−

)
(5.9)

To understand be�er the interrelation between ĉk and the transition operators of the TLA (σ̂+and σ̂−), one

can rewrite Eq. 5.2 in terms of the new operator ĉk as represented in Eq. 5.10.

dσ̂−

dt
= −iω0σ̂

− +
i

~

√
~ωsp

32πε0r3
0

(
ĉk + ĉ†k

)
(5.10)

From where one may infer that these two operators, ĉk and σ̂−, can have an oscillatory nature, since their

variations decrease with their own magnitudes and increase with the other’s operator magnitude. Furthermore,

these two last equations are precisely the ones that what one would obtain for a fictitious system containing

the following Hamiltonian

Ĥ =
~ωsp

2
ĉ†ĉ +

~ω0

2
σ̂z − (gσ̂+ + g∗σ̂−)·

(
ĉ + ĉ†

)
(5.11)

where g = γ∗
√

~ωsp
32πε0r3

0
and represents the coupling strength between the two unperturbed systems. At first

glance, it is evident the similarity of this Hamiltonian with one having a unique quantized light mode, that in-

teracts with a TLA in the dipole approximation. Here, the last term represents the Ĥint and the γ∗ is substituted

by g, which now also accounts with the distance of the metal slab to the atom and also on the work frequency.

This problem is similar to the previously addressed case of a TLA interacting with a classical monochromatic

wave. Therefore, we expect that some sort of Rabi Oscillations phenomenon will also be present in this sce-

nario. Nonetheless, a di�erent feature is now included due to the quantization of the Electromagnetic field that

supports an infinite number of eigenstates, each associated with the number of photons existent in that state.

5.2 Lossless Interaction of SPP-TLA

The inspection of the system’s time evolution will be followed by a change to the Schrödinger picture, where it will

be the main goal of this section to solve the Schrödinger equation for the Hamiltonian in Eq. 5.11. Nevertheless,

the la�er Hamiltonian does not take into consideration the dispersion of energy through loss channels. However,

as discussed before, the spontaneous emission of SPP photons is one of the reasons for which the energy is not

conserved, because the photons that travel along the metal surface are irreversible lost into the environment.

Due to the importance of this phenomenon, both the lossless and the loss scenarios will be worthy of a�ention.

Beginning first with the lossless situation, it is considered a general and convenient wavefunction, presented

at Eq. 5.12, that can be a solution of the system and that already contains the time evolution of the unperturbed

systems.

|ψ (t)〉 =
∑
n

cn (t) e−i
ω0
2 te−iωspnt |e, n〉+ c̃n (t) ei

ω0
2 te−iωspnt |g, n〉 (5.12)

Introducing this wavefunction in the Schrödinger equation, one can confirm that most of the terms cancel with

each other, in specific the ones referent to the time evolution of the unperturbed system, and yield to the Eq.

5.13.

i~
∑
n

e−iωspnt
(
ċn (t) e−i

ω0
2 t |e, n〉+ ˙̃cn (t) ei

ω0
2 t |g, n〉

)
= −

(
gσ̂+ + g∗σ̂−

)
·
(
ĉ + ĉ†

)
|ψ (t)〉 (5.13)
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The only terms that remain are the one’s associated coupling between the TLA and the SPP waves. In fact, this

formulation is analogous to the Interaction picture. However, the time evolution of the unperturbed system is

not comprised in the operators but in the states.

|ψ (t)〉 =
∑
n

cn (t) e−i
ω0
2 te−iωsp2nt |e, 2n〉+ c̃n (t) ei

ω0
2 te−iωsp(2n+1)t |g, 2n+ 1〉 (5.14)

A useful mechanism to understand what states are solutions to the system is to analyze what happens to an

initial state |i〉 if the Hamiltonian operator is applied to it. As it is known, the only term that is able to modify

|i〉 into another state is the Ĥint, since because |i〉 is a natural eigenmode of the unperturbed system and thus

it remains unaltered. Therefore, imposing that the initial state is |e, 0〉, as stated above, and applying Ĥint to

it, the new possible state generated is |g, 1〉. Repeating this process successively o the new states produced, we

find that it leads to |e, 2〉, |g, 3〉, |e, 3〉, etc. One may continue until realizes that a pa�ern shows up. The only

terms that are created in the excited state correspond to even photon numbers, whereas for the ground state

only the even photons’ numbers constitute the solution. This is rapidly understood considering that if one has a

state |e, 2n〉 (n ∈ N) and exploits the outcome of (gσ̂+ + g∗σ̂−) ·
(
ĉ + ĉ†

)
|e, 2n〉, observes that the only terms

that are created are |g, 2n+ 1〉 and |g, 2n− 1〉, since the operator σ̂+ has no atomic level to which it raises.

Similarly, if one has the state |g, 2n+ 1〉 the only resulting states would be |e, 2(n+ 1)〉 and |e, 2n〉 which leads

to even modes, also because there is no lower state than the ground state.

Nevertheless, one may argue that if the chosen initial state was |g, 1〉, then by the same reasoning the

solutions of the system would be the states |g, 2n〉 and |e, 2n+ 1〉. This solution, that is completely di�erent

from the previous one, proves that the initial condition is extremely important to extrapolate a basis for the

system. As it is intended that the TLA is excited and that no photon is being emi�ed in the initial state is (|e, 0〉),
the general wavefunction can be restructured as in Eq. 5.14. Thus, replacing this new configuration at Eq. 5.13

and a�ending that ĉ |n〉 =
√
n |n− 1〉 and ĉ† |n〉 =

√
n+ 1 |n+ 1〉, one can manipulate the equation into two

another equations 5.15, where the excited and ground atomic states are disassociated from each other.

∑
n

ċn (t) e−iωsp2nt |e, 2n〉 = g
i

~
∑
n

c̃n (t) eiω0te−iωsp(2n+1)t
(√

2n+ 2 |e, 2n+ 2〉+
√

2n+ 1 |e, 2n〉
)

(5.15a)

∑
n

˙̃cn (t) e−iωsp(2n+1)t |g, 2n+ 1〉 = g∗
i

~
∑
n

cn (t) e−iω0te−iωsp2nt
(√

2n+ 1 |g, 2n+ 1〉+
√

2n |g, 2n− 1〉
)

(5.15b)

Moreover, invoking the fact that the states must be the equal either in the le� and the right sides of the equations,

it follows

Actually, this result is in agreement to what we would expect, since the only way to create an state with

an even number of photons is by using the interaction Hamiltonian on the odd ones, and vice-versa. Also, the

direct dependence in the first derivative of a given state, by the states with a di�erence of only one photon is

also predictable, because of the structure of Ĥint that does not allow to a state annihilate instantaneously more

than one light boson. Yet, the first derivatives expressions obtained have always a recurrence relation with the

other coe�icients relative to di�erent states. Therefore, since it is impossible to compute a solution for infinite

coe�icients, the procedure selected to solve approximately this system of di�erential equations is to impose

a maximum number of coe�icients and truncate the upper coe�icients. To accomplish this task, we resorted

to the computational power of the Wolfram Mathematica so�ware. It is worth to mention that there are some

particularities in two of the di�erential equations of the system in question by truncating coe�icients. In fact,

if the coe�icients range from 0 to n, then in Eq. 5.16a the term c̃n−1 must be zero since it is not in the range.
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Likewise, the term cn+1 in Eq. 5.16b must also be zero.

ċn (t) = g
i

~
eiω0t

(
c̃n−1 (t)

√
2neiωspt + c̃n (t)

√
2n+ 1e−iωspt

)
(5.16a)

˙̃
nc (t) = g∗

i

~
e−iω0t

(
cn (t)

√
2n+ 1eiωspt + cn+1 (t)

√
2n+ 2e−iωspt

)
(5.16b)

One should also recall that to determine the dynamics of the system, the condition of the initial state |e, 0〉must

also be applied, which implies that at t = 0 one has c0 = 1 and all the remaining terms are zero. Thus, it is

assumed henceforth that the coe�icients start at n = 0.

5.2.1 Comparison of the Exact Solution with RWA Approximation

In this subsection, it shall be compared the solutions which are obtained from the Schödinger equation by using

the Hamiltonian in the RWA versus the ones acquired by using the Hamiltonian in Eq. 5.11 without any approx-

imation. For the purpose of this contrast, it is enough to consider only a set of three states in the ground state

(|g, 1〉, |g, 3〉 and|g, 5〉) and three in the atomic excited level (|e, 0〉, |e, 2〉 and |e, 4〉).
Therefore we start to present the Hamiltonian using the RWA in Eq. 5.17, where the terms that yield to

non-conservative terms are cancelled.

ĤRWA =
~ωsp

2
ĉ†ĉ +

~ω0

2
σ̂z − (gσ̂+·ĉ + g∗σ̂−·ĉ†) (5.17)

This system and many other light-ma�er interactions where it is only considered a single mode of the Electro-

magnetic field has known solution [90]. In fact, it is easy to verify that if the system is in the initial state |e, 0〉
the only new state generated by applying the ĤRWA is the state |g, 1〉. If one repeats this process once again

to |g, 1〉, it is discerned that the search for new states that may solve the system finds its end.

Hence, the system becomes analogous to the one addressed in the subsection 4.2.2, when discussing the Rabi

oscillations. Indeed, even the wavefunction that solves the system and that is represented in Eq. 5.18 is somehow

similar to one presented in Eq. 4.10.

|ψ (t)〉 = ce (t) e−i
ω0
2 t |e, 0〉+ cg (t) ei

ω0
2 te−iωspt |g, 1〉 (5.18)

Moreover, resorting to the Schrödinger equation one can a�ain the equations 5.19a and 5.19b, through simple

algebra manipulation.

ċe (t) = g
i

~
ei(ω0−ωsp)tcg (t) (5.19a)

ċg (t) = g∗
i

~
e−i(ω0−ωsp)tce (t) (5.19b)

Using once again the notation ∆ = ωsp − ω0 and defining new frequency variables Ω̃ =
√

∆2+4Ω2

2 and

Ω = |g|
~ , it is found that the general solution for this problem is given by Eq. 5.20a and Eq. 5.20b, where A1, A2,

B1 and B2 are unknown constants.

ce (t) = e−i
∆
2 t
[
A1 cos

(
Ω̃t
)

+A2 sin
(

Ω̃t
)]

(5.20a)

cg (t) = ei
∆
2 t
[
B1 cos

(
Ω̃t
)

+B2 sin
(

Ω̃t
)]

(5.20b)
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Using the condition of the initial state at t = 0 and stressing the case where the system is in coherence (ωsp =

ω0), ce (t) and cg (t) simplify into Eq. 5.21a and Eq. 5.21b, respectively.

ce (t) = cos (Ωt) (5.21a)

cg (t) = sin (Ωt) (5.21b)

These Rabi oscillations are represented in Figure 5.1 together with the solutions for the exact Hamiltonian of

Eq. 5.17 in the weak coupling regime and in the resonance.
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Figure 5.1: Plots of the probabilities Pe (t) (blue curve) and Pg (t) (orange curve), for a distance r0 = 10 nm and
considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� graphic corresponds to the system in the
RWA and the right graphic corresponds to the solution for the exact Hamiltonian, using 100 coe�icients for its
computation.

It is concluded by the figure that the approximation made by the RWA represents the original system with

a high level of accuracy, as stated in the literature where is also necessary near resonance condition [87]. it is

worth to mention that, since that in this section it is only addressed the lossless case, the probabilities of the

states in the excited atomic level (Pe (t)) and in the ground states (Pg (t)) reveal a symmetry in relation to 50%

as they must sum up to one.

Assuming now a higher value of g, by considering a distance r0 = 1 nm and a Rydberg atom, it is made the

same comparison to the solutions obtained in the RWA and with the original Hamiltonian, whose solution is

truncated to 200 coe�icients. The probabilities Pe (t) and Pg (t) are represented in Figure 5.2 for the RWA and

the exact Hamiltonian in the graphics on le� and right sides, respectively. It is certainly clear that the graphics

bear no resemblance, and in fact, it seems that represent two completely di�erent systems. As result, the RWA

should not model a system with a strong interaction, since its essential features are lost in this approximation,

such as the contribution of higher states that are important to characterize its dynamics. Another intriguing

di�erence is that the number of oscillations in the RWA is higher (with a frequency |g|~ ), while that in the original

system the probabilities Pe (t) and Pg (t) oscillate slowly and almost constantly near a probability of 50%. This

is expected since the system is not binary as in the case of the RWA where only two coe�icients exist. Hence, for

a given instant there are more possible transitions either to an excited or a ground state, having each state its

proper oscillatory pa�ern that, when sum all the contributions, concedes a steadier oscillation around the 50%

probability.

5.2.2 System’s Strong versus Weak Coupling

In this subsection is evaluated how the variation of the coupling strength g influences interaction between the

TLA and the SPP waves over the time.
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Figure 5.2: Plots of the probabilities Pe (t) (blue curve) and Pg (t) (orange curve), for a distance r0 = 1 nm and
considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� graphic corresponds to the system in the
RWA and the right graphic corresponds to the solution for the exact Hamiltonian, using 200 coe�icients for its
computation.

A�ending to Eq. 5.16 it is possible to infer that |g|~ as units of frequency, and so it is convenient to normalize

this parameter and also the other frequency terms that appear in the computation of the coe�icients (ωsp and

ω0). Thereby, it is arbitrarily chosen to normalize these variables in relation to ωsp so that the new variables

become g̃ = g
~ωsp , ω̃0 = ω0

ωsp
and the surface plasmon is set to one unit. For this problem, one of the terms

that has more influence in the behavior and time evolution of the coe�icients’ values is g̃, that symbolizes the

strength of the coupling. Furthermore, by inspecting the Hamiltonian of the system is visible that for g̃ ≥ 1 the

dipole perturbation becomes of the same magnitude order than the unperturbed system, and hence the system

is considered to have a strong coupling. Otherwise, for g̃ � 1 the coupling between the atom and the metal

slab is weak. As seen before by the relation g = γ∗
√

~ωsp
32πε0r3

0
and g̃ = g

~ωsp , the only way to change g̃ is by

modifying the distance r0 or by considering quantum objects with di�erent electric dipole moment. Therefore,

it is presented the absolute value of this parameter in Table 5.1 for di�erent values of r0 and |γ|.

Table 5.1: Values of |g̃| for di�erent values of electric dipole moment and for distinct values of r0.

r0[nm]

1 2 5 10

γ
[
10−30 Cm

] 1212 1.9635 0.6942 0.1756 0.0621
10 0.0162 0.0057 0.0015 0.005

Inspecting the above Table it is seen that only for the Rydberg atom is reached the strong coupling, whereas

for the typical values of |γ|, the system falls into the weak coupling regime even for the highest value. Moreover,

by the formula and Table5.1, it is possible to conclude that coupling strength is modified more quickly by the

variation of the distance r0 since their proportionality is of r−3/2
0 , while that for the |γ| the variation is linear.

Proceeding with the analysis, values with di�erent magnitudes for investigating their influence in the time

evolution of the systems were chosen. The selected values of g̃ are the ones corresponding to a Rydberg atom

( γ = 1212× 10−30 Cm ) for distances r0 of 1 nm, 2 nm and 10 nm. One may realize that it is not examined

the case where the electric dipole moment varies, but, since that ultimately what influences the behavior of the

system is the value of g̃, it is enough to see how the la�er is modified by |γ|. In addition, the regimes there are

meant to be investigated and compared are the ones having a strong and weak coupling between the TLA and

the SPP waves. Then it is visible by Table 5.1 that for |γ| = 10× 10−30 Cm (typical value order) the only regime

that is covered is the weak coupling, while that for the chosen scenarios, it is covered the weak, the strong and

an intermediate state of both.

Beginning with r0 = 1 nm, the solution for the coe�icients cn (t) and c̃n (t) is computed truncating the
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infinite possible number of states. Hence, N is defined to be the maximum number of states in the excited level

and also for the ground levels, i.e., ci (t) = 0 and c̃i (t) = 0 for i > N .

In this situation, due to the presence of a strong interaction, it is reckoned that the number of states relevant

in the interaction will be greater than for the case where a small perturbation is entailed. Thereby, it is used

N = 10 andN = 20 to ensure that the computed solutions have a good accuracy, and at the same time allow to

perceive the magnitude order of states for which the system represents a good approximation. For the sake of

simplicity, it is said that g̃ is real-valued and that all the forthcoming plots are scaled in time with a normalization

to the time period of surface plasmon oscillation ( Tsp = 2π
ωsp

).

The Figure 5.3 plots the probability of the states in an excited atomic level (Pe (t)) and of the ones in the

ground states (Pg (t)), where the le� side corresponds to having N = 20 and the right side to having N = 10.

As one may see, these graphics present some di�erences, although that the principal nodes are captured by

the one with less accuracy (N = 10). This means that the terms above the states |g, 21〉 and |e, 20〉 still have

contribution enough to alter the overall probabilities Pe (t) and Pg (t), i.e., the probability of the system transiting

to a state with twenty ”quanta” is not so negligible.
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Figure 5.3: Plots of the probabilities Pe (t) (blue curve) and Pg (t) (orange curve), for a distance r0 = 1 nm and
considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a truncation
number of N = 20 and N = 10, respectively.

Furthermore, one may also compare the first four coe�icients for both the truncation numbers in Figures 5.4

and 5.5, being in the former represented c̃0 (t) and c0 (t), and in the la�er c̃1 (t) and c1 (t). Besides the small

discrepancy observed in these graphics, it is worth to mention that, in spite of c̃1 (t) and c1 (t) having a lower

probability most of the time than c̃0 (t) and c0 (t), probabilities that achieve are also high. This confirms that, in

the strong coupling regime, the number of states to which the system can transit with a significant probability

is higher. One can interpret this as a redistribution of the probability of finding the system in a given state over

more states, instead of being concentrated in the two states with lower energy. Obviously, this implies that the

RWA should not be applied to a system in these conditions.

In the case with r0 = 2 nm, a similar procedure regarding the previous one was adopted. In Figure 5.6, Pe (t)

and Pg (t) are plo�ed for N = 4 (graphic on the right) and N = 100 (graphic on the le�). Moreover, in the

same way as before, the first four coe�icients for both values ofN are exhibited in Figures 5.7 and 5.8. The huge

di�erence in the terms truncated serves to highlight that the approximation that is made just by considering

four coe�icients of the ground and excited states, is almost as good as the one considering 100. One of the

biggest di�erences observed by the graphics between the distances r0 = 2 nm and r0 = 1 nm is that, in the

former, the variations are much smoother whether that in la�er the oscillations are more abrupt (suggesting the

presence of higher frequency components in the frequency spectrum). One may argue that, since the coupling

strength g̃ has units of frequency and that for shorter distances g̃ increases, it is only normal that the e�ects felt

on the graphics r0 = 1 nm also vary more rapidly.
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Figure 5.4: Plots of the probabilities |c0 (t)|2 (blue curve) and |c̃0 (t)|2 (orange curve), for a distance r0 = 1 nm
and considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a
truncation number of N = 20 and N = 10, respectively.
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Figure 5.5: Plots of the probabilities |c1 (t)|2 (blue curve) and |c̃1 (t)|2 (orange curve), for a distance r0 = 1 nm
and considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a
truncation number of N = 20 and N = 10, respectively.

The last scenario to be discussed is the weak coupling where r0 = 10 nm. Contrarily to the procedures

applied before, it is reviewed the solution for only one truncation mode (N = 50) where the first four coe�icients

are exhibited in Figure 5.9. The plots show that the system’s dynamics are essentially described by the first two

coe�icients, whose probability magnitude is far greater than the ones of the next states. This explains why

only one truncation mode was used, since that it would not make much of a di�erence in neglecting states

(other than c̃0 (t) and c0 (t)) whose contribution is residual. Also, the probabilities Pe (t) and Pg (t) were already

displayed in Figure 5.3, when comparing the exact solution with the one in the RWA. In comparison with the

strong regime, the oscillations in the weak coupling are smoother, due to the smaller contribution of the higher

states’ frequency spectrum, and the transitions between states tend to occur at a slower rate (evidenced by the

time scale of both regimes).

Another mechanism to observe the major di�erences that occur in the system as the coupling strength

increases is trough the spectrum analysis of the probabilities Pe (t) and Pg (t). Therefore, it is computed the

discrete Fourier transform for the three of coupling strength scenarios corresponding to r0 = 10 nm, r0 = 2 nm

and r0 = 1 nm (for the rydberg atom). The spectres for the first four coe�icients are presented in Figure 5.10,

Figure 5.11, Figure 5.12, which correspond to the weak, medium and strong coupling scenarios, respectively.

From these graphics it is possible to conclude that as the coupling strength increases not only the number of

frequencies increases but also the value of the frequencies involved in the system, which is reasonable since that
g
~ has frequency units. The unique Dirac delta in the weak coupling is congruent with the only Rabbi oscillation
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Figure 5.6: Plots of the probabilities Pe (t) (blue curve) and Pg (t) (orange curve), for a distance r0 = 2 nm and
considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a truncation
number of N = 100 and N = 4, respectively.
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Figure 5.7: Plots of the probabilities |c0 (t)|2 (blue curve) and |c̃0 (t)|2 (orange curve), for a distance r0 = 2 nm
and considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a
truncation number of N = 100 and N = 4, respectively.
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Figure 5.8: Plots of the probabilities |c1 (t)|2 (blue curve) and |c̃1 (t)|2 (orange curve), for a distance r0 = 2 nm
and considering a rydberg atom with |γ| = 1212× 10−30 Cm. The le� and right graphics correspond to a
truncation number of N = 100 and N = 4, respectively.
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Figure 5.9: In the graphic of the le� side are traced the plots that correspond to |c0 (t)|2 (blue curve) and |c̃0 (t)|2

(orange curve). In the graphic of the right side the plots correspond to the coe�icients |c1 (t)|2 (orange curve)
and |c̃1 (t)|2 (blue curve). Both graphics are plo�ed for the distance r0 = 2 nm and is assumed a rydberg atom
as the TLA, having |γ| = 1212× 10−30 Cm.

(also observed in the RWA) where the frequency corresponds to g̃. The amplitudes of the peaks are obtained

through the discrete Fourier transform and, therefore, their values are dependent on the number of samples as

the sampling interval with used in the computation.

The excited and ground state in the same energy level seem to possess the same frequency peaks, which may

be explained by the fact that both states have the same energy and experience the perturbation in the same way.

For the strong coupling the peaks are almost equally spaced by a frequency interval near the plasmon resonance.

In conclusion, stronger perturbations imply a higher number of states into which is probable to transit. This leads

to di�erent ways to indirectly excite a given state, which consequently yields di�erent frequencies or, in other

words, to a more complex oscillatory pa�ern. The spectrum analysis shows that even with a weak perturbation,

the state basis in use do not constitute an eigenbasis of the system because there are always at least one nonzero

frequency with a peak.
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Figure 5.10: In the graphic of the le� side is traced the spectrum correspondent to the coe�icients c0 (t) and
c1 (t), and on the the right side the ones correspondent to c̃0 (t) and c̃1 (t). Both graphics are plo�ed for the
distance r0 = 10 nm and is assumed a rydberg atom as the TLA, having |γ| = 1212× 10−30 Cm.

5.2.3 Hamiltonian Matrix

For the case of the unperturbed system the Hamiltonian density matrix would be a diagonal matrix using its

eigenbasis, where for the sake of simplicity is set the order sequence of the eigenstates in terms of the matrix

as: |e, 0〉, |e, 2〉 … |e, 2n〉, |g, 1〉, |g, 2〉 … |g, 2n+ 1〉. Obviously, it is necessary to employ a truncation technique
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Figure 5.11: In the graphic of the le� side is traced the spectrum correspondent to the coe�icients c0 (t) and
c1 (t), and on the the right side the ones correspondent to c̃0 (t) and c̃1 (t). Both graphics are plo�ed for the
distance r0 = 2 nm and is assumed a rydberg atom as the TLA, having |γ| = 1212× 10−30 Cm.
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Figure 5.12: In the graphic of the le� side is traced the spectrum correspondent to the coe�icients c0 (t), c1 (t)
and c2 (t), and on the the right side the ones correspondent to c̃0 (t), c̃1 (t) and c̃2 (t). Both graphics are plo�ed
for the distance r0 = 1 nm and is assumed a rydberg atom as the TLA, having |γ| = 1212× 10−30 Cm.

to obtain a finite matrix, since the matrix is infinite.

Recalling that the density matrix is computed as in Eq.5.22, then it is straightforward to obtain the density

matrix of the Hamiltonian on the presence of the perturbation, which may be retrieved from the matrix in Eq.5.23,

where one can perceive the relation between a given coe�icient and its anterior.
〈1|H |1〉 · · · 〈1|H |N〉

... · · ·
...

〈N |H |1〉 · · · 〈N |H |N〉

 (5.22)
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(5.23)
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As one may identify, if the coupling strength as a nonzero value then the density of the matrix will not remain

diagonal. This means that the eigenstates of the system are no longer the ones of the unperturbed system, i.e., the

new eigenstates that can in fact be measured are now a superposition of the previous eigenstates correspondent

to the unperturbed system. As it will also be discussed, the new natural states will see their eigenergies being

modified as the coupling strength increases. This type of analysis provides important insights in how the states

of the system change and, in particular, how the previous states are related with the new ones as g̃ varies.

Considering that the new eigenstates are ordered as |N〉, |N − 1〉 … |1〉, |0〉, where higher eigenergy corre-

sponds to |N〉 and the lower one to |0〉, then it can be computed the transformation matrix that transforms the

previous basis in this new basis. Considering first the habitual scenario of weak coupling, the transformation

matrix, as well as its inverse, are given in Figure 5.13, which are obtained by solving first the diagonalization

of the Hamiltonian density matrix. It is visible that the excited and ground level states having the same energy

(e.g.,|e, 2i〉and |g, 2i+ 1〉) generate the new states through a linear combination, having almost the same abso-

lute contribution (1/
√

2). For example, the new lower eigenstate, |0〉, is practically given by− 1√
2
|e, 0〉− 1√

2
|g, 1〉,

and the second lower, |1〉, by 1√
2
|e, 0〉− 1√

2
|g, 1〉. In fact, in spite of the new eigenenergies are still very similar to

the previous ones, this new ones have a small deviation. Moreover, it was observed that for linear combinations

where the contribution from the two old states have contrary signal, the energy will be greater in comparison

when the contributions have the same signal. For example, in the case of the eigenergy correspondent to |1〉
this will be E1 = ~(−ω0

2 +ω)(1 +4) while that for |0〉 its eigenergy is E1 = ~(−ω0

2 +ω)(1−4) , where4 is

a small deviation. More specifically, if it is considered ~ = ω = ω0 = 1, for the sake of simplicity, then the new

eigenenergies obtained for this weak coupling scenario are: 6.7, 6.3, 4.6, 4.4, 2.6, 2.4, 0.6, 0.4. Since that the new

eigenstates are composed by only two of the previous states, it is only normal that only a Rabbi oscillation will

appear in the spectrum, since the state can only transit between two states.

Figure 5.13: The matrix on the le� side corresponds to the transformation on the previous basis to the new
eigenbasis of the perturbed system, while the matrix on the right side corresponds to the inverse transforma-
tion. Both matrices are consider a truncation up to the first eight states and considering a coupling strength
correspondent to a distance r0 = 10 nm and a rydberg atom as the TLA.

For a medium coupling strength, the transformation matrices are displayed in Figure 5.14. In comparison

with the previous case, where the new eigenstates had their main contribution due to only two terms, here

they are projected in much more states. However, the higher and the lower new eigenstates are projected (with

significance) into fewer states, since there are no immediate upper and lower states into to transit, respectively.

From the structure of HInt, an atomic excited/ground state can only transit to the immediate ground/excited

states with one photon di�erence. Hence, as g̃ gets stronger, the states also tend to indirectly transit, with an

higher probability, to the states with two and even three photons di�erences. However, since the immediate

states of a given state |i〉 also can transit back to |i〉, the projection is not so intuitive to perceive. Moreover,

the new eigenerergies are 8.8, 6.4, 5, 3.7, 2.6, 1.4, 0.8, -0.5, from where it is seen that the deviations regarding the

unperturbed eigenergies increases and it is even possible to achieve negative energies.

In the strong coupling scenario the transformation matrices are presented in Figure 5.15. The correct ap-

proach would be to use an higher truncation for this scenario. However, the dimension of the matrices would

be too big to display them. A�ending to this flaw, important comments to make in this regime are to the fact

that the projection of the older states in the new eigenstates becomes piratically uncorrelated. Moreover the
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Figure 5.14: The matrix on the le� side corresponds to the transformation on the previous basis to the new
eigenbasis of the perturbed system, while the matrix on the right side corresponds to the inverse transforma-
tion. Both matrices are consider a truncation up to the first eight states and considering a coupling strength
correspondent to a distance r0 = 2 nm and a rydberg atom as the TLA.

new eigenergies are 13.7, 9.6, 6.2, 3.4, 1.3, -0.3, -2.2, -3.7, where the deviations are even more visible since the

energy due to the perturbation is significantly high and the relationship of these eigenergies with the ones of

the unperturbed system become unclear.

The time evolution of this new eigenstates probably have a time evolution e−i
Eit

~ , beingEi the correspondent

eigenenergy. Therefore, having the unperturbed states projected in terms of the new eigenbasis should allow to

obtain the time evolution of the former states. In addition, the times evolution of the unperturbed states and of

the coe�icients cn (t) and c̃n (t) are related in such a way that the only di�erence in its spectrum is a shi� on

the frequency for the observed peaks.

A general wavefunction for the system represented in this eigenbasis may be of the form |ψ′ (t)〉 =
∑
k αke

−iω′kt|k〉,
which contains the same information as the wavefunction |ψ (t)〉 of Eq. 5.14 in the previous basis. Therefore,

assuming that both wavefunctions are the same but in di�erent basis, then one may compute the probability to

measure the state |e, 0〉, i.e., ‖〈e, 0|ψ (t)〉‖2 which must be equal to |e, 0〉, i.e., ‖〈e, 0|ψ′ (t)〉‖2. In the unperturbed

basis it is straightforward to show that this probability results in the coe�icient ‖c0(t)‖2. On the other hand

in the other basis (the eigenbasis) the projection of the |e, 0〉 in this basis must be done, which will depend in

the coupling regime considered. Using the weak coupling as example, |e, 0〉 ≈ 1√
2
|0〉 − 1√

2
|1〉 which one may

further check (assuming α0, α1 ∈ <) that its probability yields to

‖〈e, 0|ψ′ (t)〉‖2 =
1

2

[
α2

0 + α2
1 + 2 cos ((ω′1 − ω′0) t)

]
(5.24)

Therefore, this result must be equal to the coe�icient ‖c0(t)‖2. One may verify in Figure 5.10 that the result of

the previous equation is in agreement with the spectrum, since it shows only one peak for a frequency other than

zero. The same procedure could be undertaken for the other coupling regimes, however they are not addressed

here.

Figure 5.15: The matrix on the le� side corresponds to the transformation on the previous basis to the new
eigenbasis of the perturbed system, while the matrix on the right side corresponds to the inverse transforma-
tion. Both matrices are consider a truncation up to the first eight states and considering a coupling strength
correspondent to a distance r0 = 1 nm and a rydberg atom as the TLA.
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5.2.4 Detuning Influence in the System Dynamics

In order to understand the influence of the detuning between ω0 and ωsp in the system’s behavior, two di�erent

scenarios of detuning are addressed, which are further compared with the resonance case. These two scenarios

correspond to having ω0 � ωsp and ω0 � ωsp. In addition, the discussion highlights the di�erences between

the weak and the strong coupling.

Starting with the weak coupling regime ( r0 = 10 nm ), the graphics of probabilities Pe (t) and Pg (t) for

10ω0 = ωsp and ω0

10 = ωsp are plo�ed in Figure 5.16, in the graphic on the right and in the le�, respectively. The

case of resonance was already displayed in Figure 5.2. The first big di�erence is spo�ed between the resonance

case and the other two with ω0 6= ωsp, wherein the former intense oscillations are observed while for the

other scenarios, the system tends to remain in the initial state (|e, 0〉) over the time. This means that in a weak

coupling regime, if the TLA does not have an atomic frequency near the radiation waves frequency supported

by the interacting metal slab, that in this case corresponds solely to ωsp, then these two systems barely interact

with each other and consequently almost no SPP quanta are radiated. However, for ω0 � ωsp there are still

identified some oscillations in the probabilities even that very closely of 1 for Pe (t) and of 0 for Pg (t). These

oscillations in the perspective of the energy seem a li�le counter-intuitive, since that, because the initial state

has a lower energy (~ω0) than one in the ground state containing an SPP photon, it would be expected that

the atom would not have enough energy to excite states where photons are emi�ed. However, by solving the

di�erential equations system in Eq. 5.15 the solutions indicate that transitions to the ground states where SPP

waves appear are possible.

In contrast, for ω0 � ωsp the system manifest no modification of its initial state over the time. Thereby, the

state |e, 0〉, that is an eigenstate for the system unperturbed (ĤEM + ĤAt) appears to be also an eigenstate of

Ĥint since it remains unaltered.

In conclusion, is observed that for the weak coupling the detuning of the atomic frequency in relation with

ωsp enables the systems to be treated separately as a good approximation, since the interaction between both

is negligible.
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Figure 5.16: In the graphic of the le� side are traced the plots that correspond to Pe (t) (blue curve) and Pg (t)
(orange curve) for the case where ω0

10 = ωsp. In the graphic of the right side the probabilities Pe (t) (blue
curve) and Pg (t) (orange curve) are referent to having 10ω0 = ωsp. Both graphics are plo�ed for the distance
r0 = 10 nm and is assumed a rydberg atom as the TLA, having |γ| = 1212× 10−30 Cm.

Moving now to the strong coupling regime, the probabilities of the excited and ground states are represented

in Figure 5.11 for 10ω0 = ωsp and ω0

10 = ωsp, corresponding, respectively, to the graphics on the right and le�

side. Also, the plot of the resonance was previously presented in Figure 5.3, from where is observed a rapid os-

cillation either for Pe (t) or Pg (t) around the 50% probability. As stated before, this behavior may be explained

by interference e�ects as a result of the overall contribution of the frequency spectrum of each relevant state.
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Comparing this regime with the one for ω0

10 = ωsp, what is discovered is that for the la�er, the oscillations

amplitude of Pe (t) and Pg (t) also achieve values of 50%, though their values vary within a wider probability

range. Moreover, for ω0

10 = ωsp the system presents a surprising feature, that is related with the oscillations pat-

tern regarding Pe (t) and Pg (t). This pa�ern resembles the typical FM modulation of a carrier, that is registered

in Telecommunication systems. However, the envelope of these FM signals present the modulation of several

frequencies. These frequencies may be associated with the intrinsic oscillatory pa�ern of each one of the states

that have a meaningful contribution. This would also explain why the same behaviour in the weak coupling

regime, with the same conditions, is not observed. To comprehend be�er this phenomenon the time evolution

of the first four coe�icients are plo�ed in Figure 5.18 for 10ω0 = ωsp and ω0

10 = ωsp, in the graphics of the right

and le�, respectively. One may immediately notice that all the coe�icients for ω0

10 = ωsp present a principal

common oscillation frequency, which corresponds to the carrier frequency in analogy to the FM modulation.
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Figure 5.17: In the graphic of the le� side are traced the plots that correspond to Pe (t) (blue curve) and Pg (t)
(orange curve) for the case where ω0

10 = ωsp. In the graphic of the right side the probabilities Pe (t) (blue curve)
and Pg (t) (orange curve) are referent to having 10ω0 = ωsp. Both graphics are plo�ed for the distance r0 = 1 nm
and is assumed a rydberg atom as the TLA, having |γ| = 1212× 10−30 Cm.
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Figure 5.18: Plots of the probabilities |c0 (t)|2 (blue curve), |c̃0 (t)|2 (orange curve), |c1 (t)|2 (green curve) , |c̃1 (t)|2
(red curve). The graphic on the le� side corresponds to having ω0

10 = ωsp and the one on the right to 10ω0 = ωsp.
It was used a distance r0 = 2 nm and it was considered a rydberg atom with |γ| = 1212× 10−30 Cm.

For the case of 10ω0 = ωsp, besides no evident pa�ern is found, the states oscillate slightly but very rapidly.

In addition the system presents probability values near one for Pe (t) and around zero for Pg (t). This shows

that as the interaction Hamiltonian becomes stronger, the basis formed by the eigenstates of the coupled system
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becomes more dissimilar in relation to the basis formed by the unperturbed Hamiltonian eigenstates, since the

states transition oscillations occur at a higher rate. In addition, this result supports the idea found in the weak

coupling regime, that for ω0 � ωsp, the transitions to other states still occur.

On the other hand, for ω0 � ωsp the system over the time tends to stay in the initial state |e, 0〉, being more

di�icult for the system to transit to other possible states. The behavior of the system should be the inverse, by

reasoning that an initial state having higher energy should be able to excite states with lower energy and the

inverse should not occur. However, one must recall that the eigenstates and consequently the eigenenergies

of the unperturbed system will su�er a hybridization when the interaction is included. Therefore, an analysis

of the possible states formed in this hybridization and an explanation of how most likely the initial state will

be projected in this new eigenbasis must be done, in order to comprehend intuitively what should occur to the

system in each detuning scenario. However, this type of analysis is out of the scope of this work, reason why it

is not addressed.

5.3 SPP-TLA Interaction Accounting with Loss Processes

Herea�er, it is shown how the introduction of loss channels in the interaction between the non-local SPP and

the TLA influence their dynamics and what is the lifetime τ of the oscillations for the several eigenmodes of the

system. The comparison between the coupling regimes in the presence of losses is stressed out. The evaluation

between the lossless and loss description models is also addressed herea�er.

The introduction of radiation loss can be performed by defining ω+
0 = ω0 + iω′0 and ω−0 = ω0 − iω′0 and

rewriting the wavefunction in Eq. 5.14, as in Eq 5.25.

ω′′0 = −Γsp
2

(5.25)

By doing this, it is basically assumed that all the states are exponentially vanishing over time, beingω′0 dependent

from the emission rate through the relation in Eq. 5.26.

|ψ (t)〉 =
∑
n

cn (t) e−i
ω
−
0
2 te−iωsp2nt |e, 2n〉+ c̃n (t) ei

ω
+
0
2 te−iωsp(2n+1)t |g, 2n+ 1〉 (5.26)

This dependence [38, 91] is set as shown in Eq. 5.23 where 1
2 term emerges when computing the temporal

average of the Poynting vector.

The next step involves solving the Schrödinger equation inn order to obtain a system of di�erential equations.

This procedure curiously yields to the same di�erential equations system in Eq. 5.16 for the system without

losses. This in turn indicates that with this introduction of radiative losses, the transition pa�erns remain intact,

i.e., the coe�icients are exactly the same. However the overall state has the exponential decaying property.

Two distinct cases of the losses are considered: weak coupling and strong coupling. For the first one, it

was assumed an emission rate Γ = 2× 1013 Hz, which was chosen by plo�ing the emission rate and picking

an emission rate value near its maximum peak. In this regime, the emission rate was plo�ed for a distance (

r0 = 10 nm ) and |γ| = 100× 10−30 Cm. The electric dipole moment was chosen to be the one magnitude lower

than the one of the Rydberg atom, because if the la�er was used, then the value of the emission rate would be

higher than ωsp. Consequently, the system would disperse all its energy before any observation of oscillation in

the state’s probability occurred. For the strong coupling, the same reasoning was applied. But in this case, the

emission rate used for the losses was Γ = 8× 1014 Hz, where a distance (r0 = 1 nm) and |γ| = 100× 10−30 Cm

were considered. The plots of the probabilities Pe (t) and Pg (t) are presented in Figure 5.19, wherein the le� side

of the graphics is encountered the weak coupling regime and on the right side the strong coupling regime. What

one may observe is that a higher number of oscillations for the weak coupling occur before all the energy is lost
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and the probabilities go to zero. This is explained through the lifetime τ = 1/ω′′0 , since that for the weak coupling

regime the emission rate value is lower, and consequently yielding to a larger τ than when compared with the

strong regime, where the emission rate is higher. As seen before for a higher coupling strength g̃ the oscillations

of in probability of the states occur at a higher rate. However, this result shows that, although the oscillation is

higher for the case where a lower distance r0 is assumed, also the lifetime τ of the system decreases. In fact,

from the formula of the emission rate is possible to see that the emission rate increases exponentially with the

decreasing of the distance, while that g̃ only increases with a magnitude of 3
2 . Hence, is only natural that growth

of the oscillations rate is not su�icient to countera�ack the e�ect of the τ decrease, which is translated in a lower

number of oscillations before the probability collapse to zero.

The coe�icients probability is also presented for both regimes in Figure 5.20. The main observation inferred

by this image is that in the case of strong coupling the number of visible states is higher than in the weak one,

where the response is fully captured by the two initial states.
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Figure 5.19: Plots of the probabilities Pe (t) (blue curve) and Pg (t) (orange curve), where graphics on the le� and
right side correspond to weak ( r0 = 10 nm and Γ = 2× 1011 Hz) and strong ( r0 = 10 nm and Γ = 8× 1012 Hz)
coupling regime, respectively. It was used |γ| = 100× 10−30 Cm for both cases.
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Figure 5.20: Plots of the probabilities|c′0 (t)|2 (blue curve), |c̃′0 (t)|2 (orange curve), where graphics on the le� and
right side correspond to weak ( r0 = 10 nm and Γ = 2× 1013 Hz) and strong ( r0 = 10 nm and Γ = 8× 1014 Hz)
coupling regime, respectively. It was used |γ| = 100× 10−30 Cm for both cases.
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Chapter 6

Conclusion

The purpose of this dissertation was to study the interaction between a TLA and SPP, where the former is

placed in the vicinity of the metal slab, which supports SPP waves. To accomplish this objective, a local response

of the metal slab and the quasi-static approximation for the system were assumed.

Another parallel objective for this work was to comprehend how the introduction of the nonlocality in the

permi�ivity response of the SPP a�ects its propagation and in specific its dispersion relation. This analysis

is made in comparison with the analogous local response, where for the sake of simplicity is considered the

electrostatic regime in both scenarios. The study of the interaction between the TLA and the SPP waves was

performed by analyzing the two systems individually as an initial approach.

Hence, for the SPP, a quantum description of its electromagnetic field is carried out for the local and non-

local scenarios. Such is obtained by inspecting the energy of the electromagnetic field and by noticing that

for each radiation mode a quantum harmonic oscillator can be associated. This allows writing the operator of

the radiation field in terms of the creation and annihilation operators, which reproduce a discrete number of

eigenenergies organized in an equally spaced ladder.

The same approach is made for the spatial dispersive SPP, where the di�usion e�ects are included in the

permi�ivity via the phenomenological parameter β and using the Hydrodynamic model. This nonlocality means

that the response of the permi�ivity in a given point depends not only of its response in that point but also in

its surrounding region. This di�iculty is surpassed by considering a solution formed by the sum of planar waves

in the k domain. Thus, the permi�ivity acquires a dependence on the wave vector and it may be expressed as

the sum of a longitudinal and transverse permi�ivity, as shown in Eq.3.9 and Eq.3.10, respectively. From these

equations, it is visible that the spatial dispersion only a�ects the longitudinal component. Also, through the

Gauss’s law, an additional wave solution is observed, which is obtained by making this longitudinal component

equal to zero.

In order to obtain the dispersion relation for the non-local SPP is necessary to use an ABC besides the

habitual Maxwellian boundary conditions. This additional condition emerges due to the new degrees of freedom

that arise in the medium due to its non-homogeneity. A usual procedure to resolve the arbitrariness in the ABC

choice is by the use of constraints (with physical meaning) either for the charge density or the current.

Regarding the dispersion relation for the spatial dispersive medium in the quasi-static regime, it is seen that

the value of ω is not constant for all the wavenumbers, in opposition to what happens in the local analogous.

In the la�er, the only frequency that supports waves is ωsp. Furthermore, the monotonic curve presents a slight

positive slope and the null wavevector is observed at ω = ωsp, which implies that the propagation is made for

frequencies above the surface plasmon resonance. It was also illustrated that if β increases, so does the slope of

the curve.

The computed DOS for the non-local SPP confirms that the infinite number of states found for the local

model (due to the δ (ω − ωsp)) is redistributed over the interval of frequencies above ωsp.
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Regarding the atom description, in this study was employed the simplification of the TLA in order to quantize

the atom. In this approximation, is assumed that the only relevant eigenenergies are the ground state and the one

immediately above in terms of energy. The arguments that support this approximation lie on the consideration

that an external radiation field must have a near resonance frequency from the atomic frequency relatively

to these two states considered. Moreover, the frequency of the radiation must be detuned from frequencies

associated with the neglected atomic levels. It was also considered the Dipole Approximation, which states that

for wavelengths of the electric field much larger than the atomic dimensions, the field can be considered constant

over the atom’s region.

The solutions for the problem proposed are described in the basis formed by the tensorial product of the

eigenstates of the unperturbed systems TLA and local SPP. Moreover, to obtain the time evolution of the system

is considered a wavefunction containing the time evolution of the unperturbed Hamiltonian and an additional

coe�icient (time-dependent) to incorporate the time evolution of ĤInt. This problem in the electrostatic regime

gives origin to a system of di�erential linear equations that may be solved using the truncation of the coe�icients

above a chosen number. Also, it was determined that the solutions of the system, given the initial state |e, 0〉, are

of the form of |e, 2n〉 and |g, 2n+ 1〉 (n ∈ N). Thus, the only states that can appear in this system in the atomic

excited state correspond to states having an even number photons and being simultaneously in the ground state.

This solution would be inverted if the initial state was |g, 0〉.
The solutions obtained were evaluated in the weak and strong coupling regimes. The main conclusion that

is extracted for the weak regime in resonance (ω = ωsp) is that the number of states relevant to describe the

dynamics of the interaction are mainly |e, 0〉 and |g, 1〉, which means that the system presents adversities to

transit to the above states. Because of the small interference with higher states, the oscillation in the probabilities

Pe (t) and Pg (t) are smooth and similar to the sinusoidal Rabi oscillations, addressed for the classically described

radiation wave. Hence, the RWA represents a good approximation in these conditions.

However, in the strong coupling at the resonance, the number of coe�icients, whose contribution entails most

of the system evolution, is superior to the one found in the weak coupling regime. In addition, the probability

of each state oscillated much faster is higher in this regime (strong coupling). The contribution of more states

explains why the probabilities Pe (t) and Pg (t) have a non-smooth variation over the time, since the sum of the

di�erent frequency spectra for each state will cause interference e�ects. For this case, the RWA exhibits large

discrepancies when compared to the real solution.

In the case of having ω0 � ωsp, is seen that exists a common oscillation frequency over the time for the

coe�icients probability, which acts as the carrier in a modulation FM. In the case of having ω0 � ωsp, the

probabilities of the states are almost zero with the exception of the initial state, whose probability is near one.

This means that the state tends to stay in the initial state, acting like an eigenstate of the total system including

ĤInt. If it is reasoned that the initial state has a higher energy than other states, then it should be possible to

excite them and, otherwise, the system should remain in the same state. However, this behavior is the opposite

to the one that is observed. Therefore, a detailed analysis of the hybridization of the new eigenstates of the

system should be taken.

The interaction accounting with channel losses is also examined, where its inclusion is done through the

emission rate phenomenon. The la�er is derived using the Fermi Golden Rule, which consists in the first order

term of the TDPT. Furthermore, it is also employed the RWA in order to keep the terms of ĤInt that are associated

with energy conservation. The results of the emission rate for the non-local SPP displays a peak for frequencies

near the surface plasmon resonance. The e�ect of the spatial dispersion in the emission rate is that for larger

di�usion e�ect, the peak becomes wider and its maximum amplitude decreases. Therefore, in the local limit is

possible to infer that the emission rate obtained will become a Dirac delta, which is in concordance to the local

result.

In conclusion, the spatial dispersive response allows to frequencies above the ωsp to support wave modes,

which is intimately linked with the new longitudinal wave solution that appears for εL(ω,
−→
k ) = 0. On the other
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hand, this implies that the DOS in the non-local case is redistributed over a wider interval of frequencies and

consequently the emission rate at ωsp is no longer given by a result proportional to δ (ω − ωsp).

For future work, it may be developed a more accurate description of the spatial dispersion for the surface

plasmons, e.g., using other terms [92] that enable a be�er fit to the experimental data. Also, the study of the

interaction of this plasmonic apparatus with a more interesting and complex system may be taken, like a multi-

level atom with a degree higher than two. Then, a discussion about the dynamics of the new system in strong

and weak coupling, as well as contrasting results with the TLA, should be extended.

Another development that could be made is the inclusion of other loss channels besides the one already

considered due to the emission rate. An example of such, is the energy dispersed in the medium, which was

initially introduced by the damping term in the permi�ivity. This introduction would need to be done in a

heuristically way since the losses usually imply that the system’s Hamiltonian loses its hermitian property.

It could also be investigated why the system in a detuning scenario presents an unexpected behavior, by

analyzing the hybridization of the eigenstates of the unperturbed system that arises because of the interaction

Hamiltonian.

The interaction between the SPP waves and the TLA described in this dissertation, but for the case where

the medium has an anisotropic response, could also lead to an interesting problem.
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[34] M. Diem, Modern Vibrational Spectroscopy and Micro-Spectroscopy. John Wiley & Sons, Ltd, aug 2015.

[35] K. A. Milton, “The casimir e�ect: recent controversies and progress,” Journal of Physics A: Mathematical and

General, vol. 37, no. 38, pp. R209–R277, sep 2004.

[36] P. W. Milonni, The �antum Vacuum. ACADEMIC PR INC, 1993.

[37] D. J. Gri�iths and E. Ho, “Classical casimir e�ect for beads on a string,” American Journal of Physics, vol. 69,

no. 11, pp. 1173–1176, nov 2001.

76

https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Notes.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-51-quantum-theory-of-radiation-interactions-fall-2012/lecture-notes/MIT22_51F12_Notes.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2003/lecture-notes/chap5.pdf
https://ocw.mit.edu/courses/nuclear-engineering/22-611j-introduction-to-plasma-physics-i-fall-2003/lecture-notes/chap5.pdf


[38] S. Lannebère and M. G. Silveirinha, “Negative spontaneous emission by a moving two-level atom,” Journal

of Optics, vol. 19, no. 1, p. 014004, dec 2016.

[39] M. Moeferdt, “Nonlocal and nonlinear properties of plasmonic nanostructures within the hydrodynamic

drude model,” 2017.

[40] Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier, and J. B. Pendry, “Surface plasmons and nonlo-

cality: A simple model,” Physical Review Le�ers, vol. 111, no. 9, aug 2013.

[41] C. David, “Two-fluid, hydrodynamic model for spherical electrolyte systems,” Scientific Reports, vol. 8, no. 1,

may 2018.

[42] R.-L. Chern, “Spatial dispersion and nonlocal e�ective permi�ivity for periodic layered metamaterials,”

Optics Express, vol. 21, no. 14, p. 16514, jul 2013.

[43] G. Barton, “Some surface e�ects in the hydrodynamic model of metals,” Reports on Progress in Physics,

vol. 42, no. 6, pp. 963–1016, jun 1979.

[44] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-

plasmon polaritons,” Reports on Progress in Physics, vol. 70, no. 1, pp. 1–87, dec 2006.

[45] E. K. U. Gross, C. A. Ullrich, and U. J. Gossmann, “Density functional theory of time-dependent systems,”

in NATO ASI Series. Springer US, 1995, pp. 149–171.
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